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Fig. 1: System User Interface: (a) Spatial-temporal view to display a simulation scenario of autonomous driving; (b) Radar view to
present the evaluation scores of five modules of autonomous driving and an overall evaluation score at a given time; (c) Timeline
view to show the scores over time; (d) Parallel coordinates view to display both the score (d-1) and factor value (d-3) of each factor
from five modules, with customizable ranking settings for different factor priorities (d-2); (e) Visualization of the autonomous
driving states on speed, acceleration, wheel turning angle of autonomous driving vehicles (e-1), as well as the type and priority
distributions of obstacles in the scenario (e-2).

Abstract— Autonomous driving technologies often use state-of-the-art artificial intelligence algorithms to understand the relationship
between the vehicle and the external environment, to predict the changes of the environment, and then to plan and control the behaviors
of the vehicle accordingly. The complexity of such technologies makes it challenging to evaluate the performance of autonomous
driving systems and to find ways to improve them. The current approaches to evaluating such autonomous driving systems largely use
a single score to indicate the overall performance of a system, but domain experts have difficulties in understanding how individual
components or algorithms in an autonomous driving system may contribute to the score. To address this problem, we collaborate
with domain experts on autonomous driving algorithms, and propose a visual evaluation method for autonomous driving. Our method
considers the data generated in all components during the whole process of autonomous driving, including perception results, planning
routes, prediction of obstacles, various controlling parameters, and evaluation of comfort. We develop a visual analytics workflow
to integrate an evaluation mathematical model with adjustable parameters, support the evaluation of the system from the level of
the overall performance to the level of detailed measures of individual components, and to show both evaluation scores and their
contributing factors. Our implemented visual analytics system provides an overview evaluation score at the beginning and shows the
animation of the dynamic change of the scores at each period. Experts can interactively explore the specific component at different
time periods and identify related factors. With our method, domain experts not only learn about the performance of an autonomous
driving system, but also identify and access the problematic parts of each component. Our visual evaluation system can be applied to
the autonomous driving simulation system and used for various evaluation cases. The results of using our system in some simulation
cases and the feedback from involved domain experts confirm the usefulness and efficiency of our method in helping people gain
in-depth insight into autonomous driving systems.

1 INTRODUCTION
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Autonomous driving technologies have advanced rapidly in recent
years. More and more car manufacturers consider the installation
of autonomous driving systems in their cars, in particular those elec-
tronic models. By letting people stay away from the steering wheel,
autonomous driving can reduce the stress associated with driving. How-
ever, delegating decision-making in driving to algorithm-driven auto-
matic systems also raises many concerns, such as driving safety and
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algorithm reliability [1].
Autonomous driving model developers and researchers have investi-

gated methods to evaluate autonomous driving technologies to identify
design deficiencies and then fix them. Recently, various evaluation
criteria for autonomous driving have been proposed. For example, the
Society of Automotive Engineers (SAE) released a classification to
categorize autonomous driving technology into six levels, from L0 to
L5 [2]. China also published a white paper with its own classification,
from T1 to T5 [3]. These classifications grade autonomous driving ve-
hicles based on their performances in multiple driving tasks in various
scenarios. Although these qualitative evaluation criteria provide a clear
understanding of what an autonomous driving system can achieve, they
cannot tell what factors may contribute to success or failure in a test.
For example, when an evaluation method can downgrade a system due
to its failure in a test of turning at an intersection (e.g., failing to yield to
a vehicle or a pedestrian), recognizing the causes of the failure requires
more advanced techniques to understand the interior of the system.

Some research has explored quantitative evaluation methods to re-
veal more details of autonomous driving systems. However, some
of these methods evaluate autonomous driving from the perspectives
of task complexity and environmental complexity without consider-
ing objective metrics, such as starting acceleration and following dis-
tance [4], while some rely solely on driving experience or conventional
autonomous driving scenarios for evaluation model selection without
the integration of official evaluation guidance or important criteria pro-
vided by autonomous driving module developers [5–7]. Many large
technology companies have developed autonomous driving visualiza-
tion tools, such as Apollo Dreamview [8], etc. However, they merely
visualize data from autonomous driving modules, not evaluate them.

We propose a visual analytics approach for the evaluation of au-
tonomous driving systems. Our goal is to let module developers under-
stand the performance of the autonomous driving system. We aim to
provide module developers with tools to investigate and explain various
evaluation scores of an autonomous driving system through an intuitive
and interactive interface. We implement a visual analytics system to
support the user-driven computation, exploration, and evaluation of
the performance score for each factor in each module of the whole
autonomous driving process. Through various visualization designs,
module developers can examine the overall performance of the system,
the performance of each involved module, and the impacts of individual
data factors. Our research contribution is as follows:

• We develop a visual evaluation workflow from overview to de-
tails that helps autonomous driving module developers explore
the performance of each module and related contributing factors.

• We build a visual evaluation system to support visual and inter-
active evaluation of the whole process of autonomous driving.

• We develop application scenarios for autonomous driving
evaluation with cases evaluated by the domain experts.

The paper is structured as follows. Sect. 2 reviews related work.
Then, we briefly describe the workflow of autonomous driving and
derive the evaluation requirement in Sect. 3. Our visual evaluation
method is presented in Sect. 4. To demonstrate the capability of our
approach, we introduce the applications of our method in the simulation
driving datasets in Sect. 5 and our evaluation work with domain experts
in Sect. 6. Finally, we discuss the limitations and future work in Sect. 7.

2 RELATED WORK

2.1 Autonomous Driving and Simulation
The success of Boss, the champion vehicle the DARPA Urban Chal-
lenge [9], has ignited autonomous driving and also popularized the
software structure of its autonomous driving system, which include
such major subsystems as perception, motion planning, and decision-
making. Nowadays, various types of autonomous driving systems
have been developed. A recent comprehensive summary on the devel-
opment of autonomous driving by Yurtsever et al. [10] discusses the
challenges in autonomous driving and presents available databases and
tools during the development of the autonomous driving system. In

addition to technical challenges, there are also many social concerns
in autonomous driving that have been widely discussed. Litman [11]
explores the benefits and costs of autonomous driving as well as its
development in transport planning, transport safety, energy-saving, and
emission reduction, and other social issues in the future.

An autonomous driving system must go through rigorous tests be-
fore being put on the road. Considering the potential high costs of
testing on public roads, research on simulation environments before
road tests has become an important topic. Many corporations or orga-
nizations provide open-source autonomous driving frameworks such
as Autoware [12] and Apollo [13] and continuously develop and im-
prove autonomous driving simulation tools. Various simulation tools
have been developed. CARLA [14, 15], an open-source autonomous
driving simulation tool, supports training, prototype design, perception,
control, and other autonomous driving model verification, and provides
available signals for driving strategy training and a variety of environ-
mental conditions specified. LGSVL [16], a high fidelity simulation
tool for the autonomous driving, supports customizable simulations by
allowing the creation of new controllable objects and the replacement
of simulation modules. In addition, corporations are also active in de-
veloping their own testing methods. For example, Baidu has proposed
its simulation test platform, Dreamland, within its autonomous driving
platform Apollo [17]. Dreamland provides various simulation scenarios
of autonomous driving performances (e.g., collision detection).

These tools and platforms largely focus on data generation with a
visible scene and the presentation of evaluation results, and do not sup-
port user-driven in-depth evaluation of an autonomous driving systems.
However, they can be used as the foundations for interactive visual
analytics of the performances of the system and individual modules.
The data generated by LGSVL can be used to gain the insight into
the behaviors of autonomous driving system. Apollo Dreamview [8],
as a visualization platform for autonomous driving data, can be used
to develop our visual analytics evaluation method of the performance
scores and contributing factors. To our best knowledge, our method is
the first of its kind to use a visual evaluation workflow to analyze the
key components of a whole autonomous driving process.

2.2 Evaluation methods for Autonomous Driving
Currently, the evaluation of autonomous driving is mainly divided into
qualitative evaluation and quantitative evaluation. Qualitative evalu-
ation methods can directly show the quality of autonomous driving
technology but face challenges in explaining the rationale and evalu-
ation criteria of autonomous driving decisions. For example, while
we can easily tell that an autonomous driving system fails to avoid a
pedestrian in a test, finding the true cause of the failure (e.g., a high
speed or an insufficient deceleration distance) is a non-trivial task.

Quantitative evaluation is important to the evaluation and analysis of
autonomous driving but currently lacks unified standards. Researchers
often use their own methods [18]. Some have chosen objective indi-
cators based on their experience and expert opinions. Even so, the
parameters they choose are quite different. Meng et al. [5] divide au-
tonomous driving data into three parts, intersection behavior, objective
avoiding behavior, and car-following behavior. They evaluate the au-
tonomous system based on parameters generated from these three parts.
Dong et al. [6] select such parameters as driving time, detection of
signs and lines, velocity variance in evaluation. Evaluation models
include Grey Relational Analysis, AHP, TOPSIS, or just by subjective
experience [5–7]. Different choices on parameters lead to different
mathematical modeling methods (e.g., information-theory-based vs.
entropy-based), so the models of these projects cannot be directly com-
pared or transferred. Most of evaluation methods discussed above are
mathematical and lack interactive or visualization support.

Visual analytics approaches are argued to be suitable for complex
situation awareness [19, 20] and for explanation of machine learning
models [21]. However, research on visual analytics in autonomous
driving is rare. One exception is VATLD [22], but its focus is on
a specific component of an autonomous driving system, traffic light
detection, rather than the whole process. More research is needed in
this area.



2.3 High-dimensional and Spatial-temporal Visualization

In autonomous driving evaluation, data of interest is usually high-
dimensional spatial-temporal information. Thus, we review relevant
literature on the visualization of such data, which has been an important
topic in visualization research [23–25].

High-dimensional data visualization mainly include dimension re-
duction algorithm, subspace partition, interactive visualization cus-
tomization, parallel coordinates, radar view, etc. [26, 27]. Dimension
reduction (DR) methods are mainly divided into linear mapping and
nonlinear mapping. The general DR methods are PCA, LDA [28],
and the kernel-based methods KPCA, KFDA [29, 30], and flow learn-
ing such as Isomap, LE, and LLE [31, 32]. However, because the
DR method lacks explainability, we mainly adopt the visualization
methods like parallel coordinates and radar view to visualize the high-
dimensional data in autonomous driving evaluation.

Autonomous driving is a good application scenario for spatial-
temporal visual analytics. Regarding the visualization of spatial-
temporal data, Andrienko et al. surveyed available software tools [33],
and also proposed an approach to reveal patterns and trends of mass mo-
bility through spatial and temporal abstraction of movement data [34].
Ferreira et al. [35] supported spatio-temporal queries for taxi data and
enabled the examination of mobility across the city. Chen et al. [36]
proposed an visual analytical workflow using context information for
real-world vehicle trajectory analysis to identify dangerous driving
behaviors. In our work, the high-dimensional and spatial-temporal data
comes from the various components of an autonomous driving system,
and the characteristics and patterns of such system data differs from
those of data generated from human behaviors seen in those systems
mentioned above.

3 OVERVIEW

We collaborate with a group of experts from a car company who focus
on the development of autonomous driving systems. We have in-depth
collaboration in the requirement specification, visualization justifica-
tion and expert evaluation. Our general goal is to support the visual
evaluation of autonomous driving systems. In this section, we first sum-
marize the components in an autonomous driving system and derive the
suitable data for evaluation. Then, we describe the design requirements
for a visualization-based evaluation system.

3.1 Autonomous Driving Framework

Generally speaking, an autonomous driving system include three major
components: perception, decision-making, and control. The Perception
system concerns the use of various sensors that collects basic data on
a vehicle and its surrounding environment. Currently, involved sen-
sors often include GPS, IMU, ultrasonic radar, millimeter-wave radar,
and cameras. Information collected from these sensors is diverse and
can include essential information about the vehicle (e.g., its position,
orientation, and driving mode), signal information (e.g., traffic lights),
surrounding obstacles (e.g., obstacle category, position), etc.

The results of the perception component are the inputs to the
decision-making component. Combined with non-environmental fac-
tors such as traffic rules and driver experience, the decision-making
component predicts the changes of the driving environment and com-
pletes the judgment on the behaviors of the traffic participants and the
computation of their potential travel trajectories.

In the autonomous driving mode, the results of the decision-making
component are used to control the actions of the vehicle. First, a
travel path is calculated based on the results, and then a corresponding
driving action plan that includes a series of instructions is produced.
To execute the action plan, the autonomous driving system transmits
the instructions to the vehicle body to control various systems of the
vehicle, including braking, steering, engine, and signals. During this
process, the autonomous driving system continuously monitors the
status of the vehicle and the surrounding environment, and if necessary,
adjusts the action plan.

Based on the above autonomous driving process and design re-
quirements from module developers we collaborate with, we classify

autonomous driving data into five modules: perception, planning, pre-
diction, control, and comfort. Our design to support the evaluation of
autonomous driving systems targets the evaluation of these modules.

3.2 Data for Evaluation
Autonomous driving data can be obtained from the real car tests or
simulation tests. Due to the limitations of the real testing environment,
we use the autonomous driving data records obtained from the LGSVL
simulator in this work. Based on the official classification [3] and
the inputs from our collaborators, we divide our data into five mod-
ules: perception, planning, prediction, control, and comfort. In
each module, there are several measurement factors, i.e., the attributes
captured by the sensors, that are related to its performance. The mea-
surement factors of the perception module are from the perception
component, and include signal detection accuracy, obstacle detection
accuracy, as well as the accuracy of distance between vehicle and
obstacles. With the perceived information, the autonomous driving sys-
tem needs to predict the behaviors of obstacles and traffic participants.
The prediction module from the decision making component can be
measured with the accuracy of the predicted trajectory of obstacles.
For the planning module with the understanding of the environment
and obstacles, which is also from the decision making component, au-
tonomous driving model developers are interested in such measures as
the differences between predicted vehicle speed and the actual speed at
a given time, the differences between predicted position and actual po-
sition, etc. The control module from the control component includes
those factors related to the control of throttle, brake, steering wheel, etc.
The comfort module, which concerns the feelings of the driver, uses
measures like the acceleration rate of the vehicle, turning angle, etc.
Table 1 summarizes these modules, involved factors in each module,
their descriptions, and their evaluation criteria.

3.3 Design Requirements
Our design requirements for the visual evaluation system are devel-
oped based on the real-world application needs from our industrial
collaborators. Our visual evaluation system is designed to provide the
module developers of autonomous driving systems with a perceptible
and interactive evaluation system so that they can better understand
and optimize the overall performance of an autonomous driving sys-
tem. More specifically, the requirements can be summarized as the
following:

• R1: Module developers should be able to use the system to assess
the overall performance of an autonomous driving system with a
score as general feedback.

• R2: The system should allow module developers to evaluate
the performance of a system in different time periods of the
whole driving process and to identify the time periods with bad
performance.

• R3: The system should provide methods for the evaluation of
the five modules (perception, prediction, planning, control and
comfort) so that module developers can tell the performances of
individual modules.

• R4: The system should allow module developers to observe the
performances of individual module at any time period and to iden-
tify those factors that contribute to the observed performances.

• R5: The system should allow module developers to customize
the ranking of importance of each module based on their different
goals and contexts in analysis.

4 VISUAL EVALUATION APPROACH

This section describes our method. Observing autonomous driving
data, we can determine the factors for autonomous driving evaluation
based on the previous evaluation criteria and driving experience. With
the help of AHP [37] and TOPSIS [38], two mathematical evaluation
models, we evaluate and analyze each factor, and the evaluation result
is obtained by weighted calculation. Finally, we introduce the visual
interface design.



Table 1: Evaluation factor with its description and criteria

Module Factor Description Evaluation Criteria

Comfort
Jerk Acceleration change rate The smaller the absolute value, the better; less than 1 is the

positive ideal value
Heading
Change Orientation change rate The smaller the absolute value, the better; less than 1 is the

positive ideal value

Centrifugal Centrifugal fore, calculated as speed2× kappa
The smaller the absolute value, the better; less than 1 is the
positive ideal value

Control Brake Brake strength change rate The smaller the absolute value, the better; less than 1 is the
positive ideal value

Steering Steering strength change rate The smaller the absolute value, the better; less than 1 is the
positive ideal value

Planning Pose Error
The difference between positions information planned and
actual positions information at the corresponding time
point

The smaller the absolute value, the better; the ideal value is 0

Velocity Error The difference between velocity information planned and
actual velocity information at the corresponding time point The smaller the absolute value, the better; the ideal value is 0

Perception Object
Distance

The shortest distance between autonomous driving vehicle
and obstacles

Combined with vehicle speed, the larger the value taken, the
better. If speed is less than 10m/s, the optimal value is greater
than 20; if speed is greater than 10m/s. the optimal value is
greater than speed-10

Prediction Probability The accuracy between the predicted and the actual trajec-
tory of obstacles The bigger the value, the better; the optimal value is 1

4.1 Mathematical Modeling
4.1.1 Analytic Hierarchy Process (AHP)
The basic idea of AHP is to stratify the evaluation decision problem.
According to the design requirements and description, the problem is
decomposed into different component factors. Based on the compar-
ison of these factors and their affiliations, the factors are cohesively
combined at different levels to form a multi-level analysis structure
model. Finally, the objectives in the problem are compared and ranked
according to their performance in the model.

AHP uses the consistent matrix method to construct the judgment
matrix. Let ri j denote the importance of factor i relative to j, which
ranges from 1 (factor i is as important as j) to 9 (factor i is much
more important than j); then the importance of factor j relative to i is
r ji =

1
ri j

. Fill the scale value ri j into the matrix R to get the judgment
matrix. When the judgment matrix R satisfies the consistency test, the
eigenvector corresponding to its maximum eigenvalue λmax is ω =
(ω1,ω2, · · · ,ωn)

T . According to the properties of consistency matrix,
we have ri j =

wi
w j

. Based on the construction of the judgment matrix,
ωi and ω j can be taken as the absolute importance of factor i and factor
j. Finally, the weights of the factors are obtained by normalizing ω .

4.1.2 Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS)

The basic principle of the TOPSIS method is to rank the evaluation
objects from the positive ideal solution to the negative ideal solution
by calculating the distances between them. If the evaluation object is
close to the positive ideal solution and far away from the negative ideal
solution, it is optimal. The factor values of the positive ideal solution
and the negative ideal solution represent the positive ideal value and
the negative ideal value of each evaluation factor, respectively.

In our case, we divided the autonomous driving process into five
modules and selected relevant evaluation factors in each module. We
combine AHP and TOPSIS in calculating the overall evaluation score
for autonomous driving, because there are no officially defined eval-
uation criteria for autonomous driving. Therefore, with the help of
TOPSIS, for a driving record over a period of time and a given eval-
uation factor, a time series of evaluation results for the factor can be
obtained. In this way, we can obtain the time series of evaluation re-
sults for all factors involved in the evaluation of autonomous driving
over a period of time. Because there are no standard rules for ranking
the importance of the factors of autonomous driving, AHP is used to
determine the weight of each evaluation factor. Initially the weights are
determined by module developers to equalize every evaluation module
weight. With our visual evaluation system, they can determine the

importance of each factor for different needs by themselves and the
system can calculate the parameters that meet their needs with the help
of AHP.

Assuming that there are n factors for evaluation, the matrix Am×n =
{ai j} represents the autonomous driving data for n factors at m time
points, and the evaluation criterion is r = (r1,r2, · · · ,rn). Based on
TOPSIS, the positive ideal solution A+ and the negative ideal solution
A− can be determined. The criteria for determining the positive and
the negative ideal solutions vary by factors, as shown in Table1. For
each object, its distances to positive ideal solution D+ and negative
ideal solution D− are calculated separately. The relative closeness
can be calculated by B = D−

D++D− . The higher the relative closeness is,
the better the evaluation result will be. The overall evaluation result
matrix S = (B1,B2, · · · ,Bn) can be obtained. We can then calculate
the final weighted evaluation matrix Z = Sdiag(ω) with normalized
evaluation weights ω . In our case, we set the importance of each
module equal at the beginning. Module developers can determine the
relative importance of factors and rank them to generate new criteria
r∗ and judgment matrix R∗. Repeating these steps leads to a new
evaluation result Z∗, which satisfies the user’s evaluation needs.

Due to our computing design, there must be at least one negative
ideal solution for each factor, i.e., each evaluation factor has at least
one object that takes the value of 0 even though this evaluation factor
may have an excellent overall evaluation result. This design amplifies
the evaluation difference between values of the factor, which may lead
to misjudgment in the evaluation. Therefore, we make adjustments in
TOPSIS with the assumption that the difference between the positive
ideal solution and the negative ideal solution of the evaluation factor
is minimal. In such case, we can add a regulation factor γ so that the
shortest distance between each object of the factor and the negative
ideal solution is γ . This will produce a better evaluation result. We
visualize the evaluation results in the visual interface.

4.2 Visual Interface
The visual interface, as shown in Fig. 1, mainly includes the compo-
nents for score and state visualization. The score visualization compo-
nent contains four parts to show the total score (R1, Fig. 1-b), overall
scores over time (R2, Fig. 1-c), scores for five modules at each time
(R3, Fig. 1-b. Left) and the score of factors for each module in an
autonomous driving process (R4, Fig. 1-d.1). The state visualization
component mainly contains the spatial-temporal simulation scene of
the whole process (Fig. 1-a) to show the overview of the autonomous
driving scene, which includes a map, lane lines, traffic signals, vari-
ous obstacles, predicted paths of obstacles, and planned paths of au-
tonomous vehicles. The state visualization also presents the states of



Fig. 2: The visual evaluation workflow. Our visualization system is mainly divided into into two parts, the score visualization part and the state
visualization part. From overview to detail, autonomous driving module developers as users can investigate the total score, score distribution over
time, module score at a specific time period and scores of the factor from the module. To understand why the score is good or not, users can
interactively explore the autonomous driving state including the factor values and spatial-temporal scene.

the autonomous driving vehicle (Fig. 1-e.1) and obstacles during the
process (Fig. 1-e.2), and the values of each factor involved (Fig. 1-d.3).
Module developers can explore the scores from overview to details and
then identify the state of each module and the spatial-temporal scenario
to better understand the performance (Fig. 2).

4.2.1 Score Visualization

With the input of the autonomous driving data record, we first calculate
the scores for each factor based on our model described in Sect. 4.1.
The total score, module score and factor score range from 0 to 1. The
score of each module is averaged by the scores of all the factors from
this module at each time period. The score of each time period is
averaged by the scores of all the modules at this time period. The
total score is calculated by the average of all the scores in every time
step. Module developers first read the total score in Fig. 1-b (R1) and
examine the timeline visualization (R2, Fig. 1-c) to check the trend
of the scores along the time. They can identify the outlier moments
with the low scores and check details in the radar view (Fig. 1-b). We
choose the radar chart because we have five modules which is a suitable
number of axes for choosing the radar chart. Users can easily identify
the good and bad performance scores in different modules.

From the radar view, the score distributions of five modules, includ-
ing perception, planning, prediction, control, and comfort are visualized
(R3). We can compare and analyze each module to observe the per-
formance of different autonomous driving evaluation modules. The
radar view shows the overall performance of the five modules at the
initial moment and the module scores at specific moments. It can be
dynamically updated along with the timeline. We can find the time
period with poor or unbalanced evaluation scores of each module.

Each module contains several factors for evaluation. For example,
the comfort module has Jerk, HeadingChange, and centrifugation (large
centrifugal means that the car goes through a small radius curve at high
speed and in this situation, the passengers are prone to dizziness and
nausea.) of the vehicle. The specific evaluation modules and factors
are detailed in Table 1.

There are four design alternatives for visualizing the scores and fac-
tor values of the five modules, including scatter plot matrix, radar chart,
projection method, and parallel coordinates. Scatterplot matrix is not

suitable because it is not a multivariate solution but a multiple bivariate
solution. Radar chart has already been used in the module visualization
(Fig. 1-b) and may be cluttered with larger amount of factors while
the projection methods like PCA, t-SNE lack interpretability. Parallel
coordinates provide a good display of high-dimensional data and help
users perceive both scores and values of all factors. The axes of the
parallel coordinates are the corresponding factors of the five modules,
arranged based on the order of these modules. This can help to alleviate
the order issue in parallel coordinates and to better reflect data patterns.
Moreover, the space availability in the user interface can accommodate
a view of parallel coordinates, and our collaborators agree on it.

Therefore, a view of parallel coordinates (Fig. 1-d) is used to show
the situation of each factor involved in evaluation (R4). As shown in
the figure, the top axis of parallel coordinates is the score axis, which
shows the evaluation result of each time point. The polylines in parallel
coordinates are color encoded by the total score at a specific moment.
Under the score axis are factor axes, which indicate the evaluation result
of each factor at each time point (Fig. 1-d.1). With the help of parallel
coordinates, users can easily see the connection of between overall
scores and the values of individual factor, and observe the influence of
the evaluation factors on the modules.

4.2.2 State Visualization

The spatial-temporal view (Fig. 1-a) shows the information of the
environment and other traffic participants in an autonomous driving
process. Its design goal is to provide the overall understanding of
the spatial-temporal scenarios with animation. Users can examine the
behaviors of the vehicle in this view when they try to identify the low
scores at a specific time period. The green lines in the spatial-temporal
view show the predicted movements of the obstacles. The thicker green
line indicates the planned trajectories of ego-vehicle. The fences reflect
planning decisions made by the planning module. Each type of decision
is presented in different color. A red fence means that the detected
obstacle stops moving forward while a purple fence means that the ego-
vehicle is yielding. With the fence and predicted route visualization,
users can easily understand the planned and perceived behaviors of the
ego-vehicle and traffic participants. By dragging the progress bar in the
spatial-temporal, user can review the state data and score data at any



point of time.
To help users understand both the evaluation result (score) and rele-

vant contributing factors, we use parallel coordinates to visualize the
factor values (Fig1-d.3). Thus, it is consistent that users can investigate
the score distribution and the factor value distribution in the same visual
form. The top of the chart is still the score axis, and the factor axes
below show the actual values of individual factor at each time point.
Among them, Jerk, Headingchange, Centrifugal belong to the comfort
module; Brake and Steering are about the control module; PoseError
and VelocityError concern the planning module; ObjectDistance repre-
sents the perception module; and Probability is related to the prediction
module. Thus, users not only understand how well a module performs,
but also know how individual factors in each module contribute to it.

In addition, the state component visualizes the standard attributes
of the autonomous vehicle and the obstacles during the autonomous
driving process (Fig. 1-e), including the speed, acceleration, and wheel
steering of the autonomous vehicle. This can help users directly un-
derstand the autonomous driving process. The obstacle attribute view
(Fig. 1-e2) displays the information of the obstacles surrounding the
vehicle during the autonomous driving process. It visualizes the type
and priority strategy information of obstacles in the form of a stacked
histogram.

4.2.3 Interactive Visual Evaluation
After the system evaluation is completed, users can review an au-
tonomous driving process by clicking a button to animate the process,
or by dragging the timeline to watch the animation. Users can also
observe the time view below, drag the timeline, and explore the factor
distribution of the five modules. After that, users can select and observe
the factors in the view of parallel coordinates, find the factors with low
scores, and examine the characteristics of the assessed factor values to
understand the causes of failure. Finally, users can do interactive filter-
ing and exploration on the parallel coordinates view, swipe a segment
of the evaluation factors of interest to take values, and highlight the
distribution of each evaluation factor at the corresponding time. Fig. 3
shows a scenario in which a user brushes the objects with scores less
than 0.8 on the score axis of the factor score chart, view the evaluation
results of the factors that influence such scores, switch to a view to
display the same objects on the factor value chart, and examine the
values of the factors that influence the evaluation.

Fig. 3: Parallel Coordinate Brush: the evaluation scores and the factor
values of each factor at the same time point

4.2.4 Interactively Customized Ranking
The weights of all evaluation factors are equally distributed in the
initial state. Because module developers with different background
and interest may view different factors with different priorities. Users

Fig. 4: Interactively customized ranking. The left figure shows the
original evaluation scores with all the equal weight of modules. Users
can drag the evaluation factor bars to reorder the importance of the
factors, the new evaluation score results are generated on right figure.

can drag the bars on the factor ranking visualization (R5, Fig. 1-d.2)
to reorder their own priority. Dragging the factors that users consider
important and moving the unimportant factors to the bottom can achieve
the priority customization and update the evaluation modelling. In this
way, we can get the new relative importance r between factors according
to the relative positions of those bars, construct a new judgment matrix
R, and calculate the new evaluation results according to AHP. As shown
in Fig. 9, the left side is the parallel coordinate chart of the initial
evaluation results. After reordering the factors’ positions, users can get
an updated evaluation scores showing on the right side.

4.3 Implementation
We use LGSVL Simulator [16] and Apollo [13] to implement our
system. LGSVL Simulator is an end-to-end autonomous vehicle sim-
ulator that can be integrated with autonomous driving software and
are compatible with various autonomous driving platforms. Apollo,
an open-source autonomous driving platform that incorporates such
modules as location, perception, control, prediction, and planning, has
a component, Dreamview, to support the visualization of data from
each module.

We use the Dreamview in Apollo as the basic framework to build
our visual analysis system. Through the in-depth exploration of each
module, we have refined a new set of visual evaluation methods. The
visual evaluation system creates a perceptible environment for model
developers through a series of real-time line graphs, radar view, stacked
bar graphs, and parallel coordinates. It helps module developers better
understand the performance of each module as the car moves. The
system also supports user-driven definition of the importance of the
evaluation index with interactive tools.

5 CASE STUDY

We evaluate our system with three case studies, including an overall
evaluation process on a car accident, a case to verify the specific au-
tonomous driving module evaluation, and a case on the customized
ranking in evaluation. All data involved is generated by LGSVL simu-
lation.

5.1 Visual Evaluation for A Car Accident
This case is about a collision accident at an intersection without traffic
lights where both vehicles make a left turn. This case used the Bor-
regasAve map, with cars and pedestrians randomly generated by the
simulator, to test the autonomous driving algorithms of Apollo. The
collision, a severe accident, should lead to a low overall score at the
time when the accident happens, which serves as a warning. We study
whether the system would score the relevant modules reasonably be-
cause of the accident. We also evaluate the hundred-millisecond-level
planning and prediction capabilities, which are essential metrics for
assessing the capabilities of autonomous driving algorithms.



First, we get the total score and its distribution from the timeline
view. As shown in Fig. 5, the total score is 89.06%, with a low score of
45% near the time 16:49:57.871. In the radar view, the scores of some
modules are also very lower during this time period. Second, we con-
tinue to explore parallel coordinates and examine several factors with
low scores, such as HeadingChange, Centrifugal, Steering, PoseError,
VelocityError, and ObjectDistance. Third in the exploration, we replay
the scene around the accident time and find that the vehicle under au-
tonomous driving was turning left and colliding with another car on the
right in the spatial temporal view. The distance between two vehicles
was 0, so the perception module scores 0. During the collision, the
vehicle was impacted and deflected to the extent that HeadingChange,
Steering, PoseError, and other factors scores were affected. Apparently,
the system correctly identifies the collision and gives a low score for
driving status at the time when the accident happened.

Fig. 5: A case of traffic accident. The yellow circle in the timeline view
marks the lowest score. The spatial-temporal view shows the scene
of the accident. The yellow ticks in parallel coordinates indicate the
factors with poor performance at that moment.

Further exploring the visualized data, we can find some flaws in the
autonomous driving behaviors. We explore the data around the time
16:49:57 (Fig. 6-a) to observe the scores of individual factors and be-
haviors of the vehicle. At 16:49:56.274, the Apollo autonomous driving
algorithm had not yet predicted that the other vehicle was about to make
a left turn. At 16:49:56.372, a purple decision fence appeared in front
of the ego-vehicle, indicating a decision by the planning module to slow
down the vehicle and to make space for the other vehicle on the right.
However, after 0.4s at 16:49:56.773, the planning module changed
its plan and decided to continue the movement. At 16:49:56.976, the
autonomous driving system stopped the vehicle. From the radar view
and parallel coordinates during this period (Fig. 6-b), we can see that
the planning module and the prediction module have low scores. As
shown in Fig. 6-b, Apollo can predict vehicle trajectories and plan
vehicle routes within a time frame of a hundred milliseconds. Thus, the
prediction module functions appropriately and can determine the tra-
jectories of objects in complex road conditions. The prediction score is
0.65, indicating that there is still room for improvement in this module.
If the algorithm could predict the trajectory of the other vehicle better,
it might stop the ego-vehicle earlier, outside the course of the other
vehicle. This case suggests that algorithm developers need to improve
algorithms to ensure that sudden changes of the trajectories of objects
around the vehicle do not create a new risk of collision within a time
frame of a hundred milliseconds. The planning module, on the other
hand, performed poorly during this period of time. After the prediction
module predicted the trajectory of the other vehicle, the planning mod-
ule still planned to continue the movement at 16:49:56.773. This error
also reflects the inconsistency of the prediction and planning module,
which should be investigated further by the developers.

Overall, this case shows that the evaluation system correctly iden-
tifies the time of the collision accident and gives an appropriate score
based on the performance of each module. Moreover, through inter-
active exploration, users can understand the correlation between the
accident and the performance of individual modules.

(a) From the spatial-temporal view, we can see that the autonomous driving
algorithm successfully determines the trajectory change of the obstacle within
100 milliseconds and makes the decision (the purple decision fence) to stop and
avoid it. However, the planning module contradict with the prediction module
and still plans the vehicle’s forward path.

(b) Module Performance. Parallel coordinates show that the low scores of PoseEr-
ror, VelocityError and ObjectProbability lead to the poor performance of the
planning module and medium-poor performance of the prediction module.

Fig. 6: Exploring the correlation between the accident and module
performance by reviewing the scene before the accident.

5.2 Autonomous Driving Module Evaluation
In this case, we aim at examining the evaluation functionality for each
module in autonomous driving. The initial state is shown in Fig. 1.

From the radar view (Fig. 1-b), we can clearly see that the overall
score of this autonomous driving data segment is 91.94%. The initial
state of the radar view shows the overall evaluation of each module.
The timeline view (Fig. 1-c) shows the evaluation results over time. We
focus on the period when a vehicle in autonomous driving scores low
when making turns. During this period, we learn from the radar view
that the comfort and planning modules perform poorly. Seeing the score
of each factor through parallel coordinates, we find the factors that cause
the low scores of the above two modules: HeadingChange, PoseError,
and VelocityError. To explore other factors with bad performance, we
brush the low score range on the left part (< 80) of the parallel axes
(Fig. 7). There are two main periods with low score, as shown in the
timeline view, the second half of the turn and a short period before the
turn. For these two scenarios, we explore each module.

For the comfort module, we analyze the evaluation results of Head-
ingChange through several steps. First, we use parallel coordinates to
select the region where the score is below 0.6 and query the time points



Fig. 7: Exploration of overall poor evaluation results. There are some
poor evaluation results in the second half of the turn. a, b, c, and d
shows time points with poor evaluation results in this turning process

of low scores. Second, we observe the distribution of low scores in the
timeline view. These low scores are distributed in the second half of
the turn. Third, we drag the progress bar of the spatial-temporal view
to see the state information in specific scenarios. From the autonomous
driving state data, we find that the WheelPanel changes frequently.
Finally, we see from the radar view that the comfort module scores are
low during the turning process. Observing the path of the vehicle, we
find that it is slightly away from the intersection center during the turn.
Apparently, the vehicle turned early and deviated from the optimal path
(Fig. 8-a).

Similarly, we focus on the Steering factor of the control module.
Brushing the area on the Steering axis where evaluation results are
smaller than 0.6, we can see that the points mainly fall in the second
half and the end of the vehicle turning process. Considering the fact
that the vehicle deviates from the optimal path and the steering wheel
rotation changes rapidly, we believe what is happening is that the
control module is trying to bring the vehicle back on its planned course
by making a series of adjustments to the wheel orientation (Fig. 8-b).

When analyzing the planning module, we find that PoseError and
VelocityError tend to get low scores simultaneously. The scenario
where both scores are below 0.4 occurs before the vehicle makes the
turn. Dragging the progress bar and observing the scenario, we find
that the planning score quickly picks up when the vehicle starts to move
forward and turn. We speculate this is because the planning module
needs information about the current state of the vehicle. When the
vehicle moves, the information of its speed, acceleration, and other
parameters are used as the reference for planning. However, when
the vehicle is stationary, available information is insufficient for good
planning. Therefore the accuracy of planning is relatively low (Fig. 8-c).

While exploring the ObjectProbability factor of the prediction mod-
ule, we find some evaluation results with scores close to 0. We explore
the corresponding scenarios by brushing the low-scoring area of this
factor in parallel coordinates. The system highlights these scenarios in
the timeline view. By dragging the progress bar to these time points and
analyzing the obstacle view on the left, we find that the autonomous
driving system identified an obstacle with a priority level of CAUTION.
Through the spatial-temporal view, we can easily find that this obstacle
is a car on the right side of the ego-vehicle. We consider that obsta-
cles marked as CAUTION need special attention. Therefore, in our
evaluation method, the evaluation of ObjectProbability relies heavily
on the performance of the obstacles marked as CAUTION. At that
moment, since the ObjectProbability value of the obstacle is 0, the
system gives the score of the ObjectProbability factor as 0. In other
words, the evaluation system considers that the prediction module has
completely misjudged the trajectory of this obstacle (Fig. 8-d).

5.3 Customized Factors Ranking

From the user’s point of view, the importance of individual modules
varies in different situations. For object detection algorithm developers,
they care more about the accuracy of their algorithms, so value the

(a) The comfort module exploration. The exploration approach is shown with
arrows and markers.

(b) The control module exploration. The wheel rotation changes greatly at two
adjacent time points.

(c) The planning module exploration. The vehicle is stationary when the evalua-
tion result is low.

(d) The prediction module exploration. There is one obstacle marked as CAU-
TION, and the accuracy of the prediction is 0

Fig. 8: Exploration of overall worse evaluation results.

performance of the perception and prediction modules most. However,
for control algorithm developers, their interests are in the performance
of the control module. When product managers evaluate an autonomous
driving system, they probably focus on how comfortable the passengers
of a vehicle or even the driver may feel in autonomous driving. Thus,
evaluation methods should be flexible enough to accommodate different



priorities by different stakeholders. In this case, we demonstrate how
our system allows users to change the evaluation algorithm interactively.

We sort the factors according to their level of importance (Fig. 9).
Assuming that users have greater interest in passenger comfort and
vehicle planning route capability, they can elevate the comfort and
planning modules in the list of sorted factors .

As shown in (Fig. 9), after the change of the order of factors, there
is a clear tendency for the score to drop and then rise during the turn.
Turning too fast can cause discomfort, so the scores of comfort factors
drop accordingly. The values of Jerk, HeadingChange, and Centrifugal
should be kept within a reasonable range, which algorithm developers
should be concerned with.

Fig. 9: Changing the order of factors leads to the change of the score
line graph significantly.

On the other hand, the low planning score indicates that the planning
algorithm performs poorly when the vehicle is turning, as reflected
by the bias in estimating vehicle pose and velocity. In this case, the
algorithm developer should consider how to improve the algorithm.

6 EXPERT EVALUATION

In this research, we worked closely with domain experts in autonomous
driving from a large car manufacturer. Five experts were involved
in the collaboration from the definition of design requirements to the
evaluation of the system.

To collect feedback on the system from experts, we organized a
90-minute workshop and invited three domain experts participated to
evaluate system usability and to provide suggestions for improvement.
The workshop started with a 15-minute tutorial, followed by the intro-
duction of two cases that we presented in Sect. 5.1 and Sect. 5.2. The
entire case study process took 20 minutes, including included a Q&A
session. The experts then spent 40 minutes using the system for free
exploration. After evaluating the cases and using the system, they filled
out a questionnaire.

The questionnaire has 12 questions from three perspectives: 1)
the correctness and intuitiveness of the visual evaluation method and
interactive workflow; 2) the comprehension of the visualization designs
in the system; 3) and suggestions for future improvement.

The overall feedback for our system and evaluation method is posi-
tive. In the workshop, all experts could follow the evaluation workflow
and use our system to go through different cases. One expert believed
that “The system can visually demonstrate when, where, and how au-
tonomous driving systems perform poorly.” They also confirmed that
our case study is interesting and inspiring, as one expert said “I’m con-
vinced that this system can help experts quickly and efficiently identify
the problems in autonomous driving.”

The experts agreed that the visualization tools provided by our sys-
tem greatly help the evaluation process. For example, one expert praised
the radar view by saying “it helps users clearly identify which modules
perform well or bad, supports good comparison, and also serves a
good entrance for detailed analysis.” Most experts also liked the view
of parallel coordinates and the interactive brushing function for linked
view analysis. One expert said “The interface design and interactive
performance of the system are impressive. The correspondence between
factor values and scores can be easily seen in parallel coordinates.”

7 DISCUSSION AND CONCLUSION

As autonomous driving systems are installed in more and more cars, it
is very important to test their effectiveness and reliability before their
deployment. The evaluation system of autonomous driving systems

are needed to investigate the performances of various algorithms in
different driving scenarios and to provide evidences for decisions on
improvement and deployment.

There are some limitations in our method. The mathematical mod-
eling approach we used, TOPSIS, is a method that amplifies the gaps
between factors involved in evaluation. Although this treatment facili-
tates the identification of those subjects with poorer assessment results,
it may overestimate the internal disparity of assessed factors. In the con-
text of the evaluation of autonomous driving systems, even if driving
data shows excellent performance at a certain time period, this method
still tries to find some points in the process where the evaluation result
is 0 on each factor. Consequently, autopilot data with good performance
may still get poor assessment results somewhere. Although we consider
adding a moderator γ when the extreme differences of the scoring data
are minor, its values and the moderating criteria lack sound theoretical
support.

In addition, although our visual evaluation system can identify most
of the anomalous results in system testing, sometimes it misses the
corresponding anomalies for the low scoring results identified by the
system. This situation may be due to the fact that the system is sensitive
to the changes of data inputs. Therefore, scores may fluctuate with the
change of data.

Some weakness of our system is reflected at the data level. First, so
far we only used a limited amount of simulation data without consider-
ing real-world data, only evaluated autopilot performances in normal
weather conditions without including more challenging conditions (e.g.,
fog, rain), and only examined common autopilot behaviors without
looking into more dangerous behaviors such as u-turns in busy traffics.
To make our system more reliable and effective, we need to test it with
more diverse driving scenarios that include broader driving behaviors
based on both simulated and real-world data. In addition, we have not
fully explored all driving data factors yet, and only used a few factors
to evaluate the module performances. Considering the complexity of
autonomous driving systems, we need to integrate more factors into
the evaluation algorithm. Finally, although our evaluation methodology
can be applied to simulation and live vehicle exercises, no road test
evaluation have been conducted yet.

For the scalability of our system, to support batch analysis of multi-
ple driving scenarios, we need to provide users with more flexibility in
analytical procedure. Our current analytical procedure includes three
main steps: 1) checking the distribution of the score timeline, 2) select-
ing module(s) with a low score to inspect the scores of related factors,
and 3) examining the state showing factor values and spatial-temporal
visualization. This procedure functions well for single-case analysis,
but may be insufficient for batch analysis. It is needed to enrich the
workflows and analytical procedures in our system.

We expect that our research can offer some new ideas for the evalua-
tion of autonomous driving systems. In this work, we propose a visual
evaluation system to assist the evaluation of an autonomous driving
process, modules involved in autonomous driving, and the factors that
contribute to the autonomous driving process. We constructed an evalu-
ation model by combining mathematical methods of AHP and TOPSIS,
and built a visualization system to support interactive evaluation of the
results and state of autonomous driving data. The system can help the
designers of autonomous driving systems to locate poorly performing
moments, view the corresponding autonomous driving scenarios, and
analyze and explain the reasons for low autonomous driving evaluation
results. The outcomes of our system can help them better design and
improve autonomous driving systems.
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