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a b s t r a c t

The widespread use of numerical simulations in different scientific domains provides a variety of
research opportunities. They often output a great deal of spatio-temporal simulation data, which are
traditionally characterized as single-run, multi-run, multi-variate, multi-modal and multi-dimensional.
From the perspective of data exploration and analysis, we noticed that many works focusing on spatio-
temporal simulation data often share similar exploration techniques, for example, the exploration
schemes designed in simulation space, parameter space, feature space and combinations of them.
However, it lacks a survey to have a systematic overview of the essential commonalities shared
by those works. In this survey, we take a novel multi-space perspective to categorize the state-of-
the-art works into three major categories. Specifically, the works are characterized as using similar
techniques such as visual designs in simulation space (e.g, visual mapping, boxplot-based visual
summarization, etc.), parameter space analysis (e.g, visual steering, parameter space projection, etc.)
and data processing in feature space (e.g, feature definition and extraction, sampling, reduction and
clustering of simulation data, etc.).
© 2019 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the improvement of computing power and the develop-
ment of supercomputers, simulations in different scientific do-
mains have become increasingly popular. They are widely used
in scientific applications, such as climatology, aerodynamics, etc.
The simulation data consist of the data in simulation parameter
space, simulation process, simulation output, and even the data
in in-situ visualization. Most of the scientific simulation data are
spatio-temporal. The simulation data are often characterized as
multi-run, multi-variate, multi-modal and multi-dimensional.

Spatial–temporal simulation data visualizations are designed
to compute and analyze the sensitivity, uncertainty and stabil-
ity of the simulation models. Specifically, the visual designs are
able to reveal the uncertainties in simulation space, parameter
setting in parameter space and data distribution in feature space.
Studying the whole dynamic process is not only necessary for
obtaining a full understanding of the simulation model, but also
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expected to reveal more information about the evolution of the
information in the model.

1.1. Related surveys

There is only one general review on visualization and visual
analytics works for multifaceted scientific data (including multi-
run simulation data) by Kehrer and Hauser (Kehrer and Hauser,
2013) in 2013. Considering a broader view of related surveys,
there are only parts of the research works mentioned in the sur-
vey of research challenges in ensemble data (Obermaier and Joy,
2014; Wang et al., 2015), a survey of data reduction techniques
for simulation data (Li et al., 2018), and the state-of-the-art work
in meteorology simulation (Rautenhaus et al., 2017). They either
described a small number of representative papers in detail, or
lacked of summarization on those essential commonalities and a
systematic overview. We believe that a complete survey of the
state-of-the-art work with a novel and essential perspective is
necessary.

We searched for relevant papers to add them into this survey
on the IEEE Xplore, EuroGraphics Digital Library and the ACM dig-
ital library. The papers are collected from IEEE TVCG, Computer
Graphics Forum, IEEE Visualization, EuroVis, IEEE PacificVis, etc.
Then we kept the papers using one of multi-space visualization
techniques or one of the multi-space analysis techniques.
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Table 1
Some representative papers selected from each category. The horizontal axis represents different papers while the vertical axis means different
techniques on visualization or data analysis, which includes the techniques across multiple space analysis, i.e., simulation space (VS: boxplot-
based visual summarization, GV: glyph-based visualization, ISO: isocontour and isosurface), parameter space (TE: trial-and-error exploration,
O+D: overview-to-detail exploration, F+C: focus-and-context exploration, VSt: visual steering) and feature space (DET: feature definition,
extraction and tracking, DSR: data sampling and reduction, IFE: interactive feature exploration). Many papers share essential commonalities
on multi-space techniques. All papers are classified (with different colors) and sorted in columns according to the major techniques they used.

Fig. 1. Three major categories of the survey visualized by bubbles (Collins et al.,
2009): simulation space design (green bubble), parameter space techniques (pink
bubble), feature space computation and exploration (blue bubble).

1.2. Taxonomy of the survey

From the data exploration and analytical points of view, it can
be observed that many visualization works on spatio-temporal
simulation data often share commonalities, which focus on sev-
eral similar exploration techniques, such as the exploration tech-
niques in simulation space, parameter space, feature space and
a combination of them. Actually, we found many works employ-
ing multi-space exploration techniques instead of using a single
space technique.

Specifically, the literature also can be characterized as using
similar exploration techniques including visual design in simu-
lation space (e.g., boxplot-based visual summarization, visual
mapping, silhouette-based illustrative rendering, etc.), param-
eter space analysis (e.g., visual steering, parameter space pro-
jection, etc.) and data processing in feature space (e.g., data
sampling, data reduction, data clustering, feature extraction,
etc.). Fig. 1 shows the major three categories by bubbles with
different colors. In order to help the readers, especially the novel
researchers, to get a better understanding of the related works
and research trends in their research fields, we improved an
interactive tool (Collins et al., 2009) to explore the literature in a
focus+context way. Each node can be dragged and the tool will be
regenerated by iterations. The result of the tool is shown in Fig. 2,
which shows the 10 sub-categories sharing common exploration

schemes. The horizontal axis and vertical axis can be encoded into
different information by users.

Table 1 shows the papers from all categories. From the table, it
is easy to find that many works share common visualization tech-
niques across multi-space (simulation space, parameter space and
feature space). All papers are classified (with different colors) and
sorted in columns according to the major techniques they used.
According to the simulation process, the data used in the pa-
pers we collected include the traditional simulation (single-run),
ensemble simulation (multi-run) and in-situ simulation.

We believe the topic is not all-encompassing. It does not
cover all papers on simulation data visualization, because only
partial papers on simulation data visualization can employ more
than one single multi-space techniques. Besides, we just focus on
the papers on spatio-temporal simulation data visualization.

2. Simulation space exploration

The simulation data visualization and analysis become more
and more complex, including the visualizations of model sta-
bility, model fidelity and spatiotemporal resolution. Therefore,
outliers and missing data are unavoidable. In order to solve these
problems, many visualization technologies have emerged. We
summarize several approaches to visualize simulation data with
categorizing the simulation space approaches into boxplot-
based visual summarization, glyph-based visualization, and
silhouette-based illustrative rendering in simulation space. The
former three mainly encode data into visual designs (e.g., shapes
and colors, etc.) according to data patterns and usage scenarios.
The last one mainly refers to uncertainty measurement and
uncertainty computation.

2.1. Boxplot-based visual summarization

The boxplot-based visual summarization approaches are
mainly designed to get the trend aggregation results, such as
a series of work based on a design named boxplot. They are
some common approaches to revealing summary statistics in
simulation data, especially the uncertainty information in scien-
tific data. For example, Potter et al. (2010) designed a summary
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Fig. 2. An overview of rmrmallmost of the papers in 10 sub-categories visualized by bubbles (Collins et al., 2009). We improved this interactive real-time tool to
make different levels of categories of the literature clear and easy to understand. The tool can be used to explore the literature in a focus+context way. Each node
represents a paper (a) or a sub-category (b) using identical techniques, Each node can be enclosed by bubbles to show multiple techniques it used, while the colors
of the bubbles represent different techniques. The horizontal axis represents the publication time while the vertical axis represents the citation data collected from
ScienceDirect (www.sciencedirect.com) and Google Scholar (scholar.google.com).

statistics plot to show the joint average of humidity and tem-
perature across altitude slices. In each slice, the joint mean, joint
standard deviation, skew variance and covariance are visualized
to show the summary statistics, as shown in Fig. 3(b). Besides,
the joint data histogram are shown as jittered quadrilaterals. In
this work, uncertainty is conveyed by not only the traditionally-
used variables, i.e., mean, standard deviation, skew variance and
covariance, but also the joint data histogram, which is used to
show density information. All the variables are visualized by

boxplot and well-designed glyphs in simulation space. Clustering
is also used to summarize different data patterns in feature space.

Similar to the work of the summary plot (Potter et al., 2010),
a visualization tool named Noodles (Sanyal et al., 2010) was
designed to interactively summarize the ensemble simulation
output and associated uncertainty of climate simulation data by
spaghetti plot and circular glyphs in simulation space. Spaghetti
plot is rendered to show the mean and standard deviation and
quartile, as shown in Fig. 3(a). However, when many features
overlap, spaghetti plots in Noodles may suffer from too much

http://www.sciencedirect.com
http://www.scholar.google.com
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Fig. 3. Boxplot-based visual summarization. (a) A summary view named Noo-
dles (Sanyal et al., 2010) was proposed to visualize uncertainties presented in
ensemble simulation data. (b) Two orthogonal 2-D views to form a 3-D view
to show 2-D summary plot of uncertainty visualization (Potter et al., 2010).
The joint average of humidity and temperature across altitude slices. The joint
representations of mean, standard deviation, skew variance and covariance are
shown in the glyph design. (c) A curve boxplot visualization of an ensemble
of 50 simulated hurricane tracks (Mirzargar et al., 2014). (d) Contour boxplot
for an ensemble of the pressure field of a fluid flow simulation with a line
integral convolution background image for context (Whitaker et al., 2013). (e)
An abstract visualization of the major trends in 2-D and 3-D (Ferstl et al., 2016).

Fig. 4. Glyph-based approaches to conducting comparative visualizations. (a)
The first linked view (left) shows a histogram of depth positions of the surfaces
at a selected spatial position and time step. The second linked view (right)
is a time-series view that depicts a glyph for each time step at the selected
position (Höllt et al., 2013). (b) Glyph-based techniques allowing an interactive
comparative exploration of 2-D ensembles of vector fields (Jarema et al., 2015).
(c) Glyphs in small multiples were designed to compare vortex shape and
vortex size across different ensemble vector fields (Liu et al., 2015, 2017).
(d) Noodles (Sanyal et al., 2010): visualization of water-vapor mixing ratio
to illustrate the progression of uncertainty by the use of spaghetti plots and
uncertainty glyphs.

visual clutter, so that they cannot easily convey the main trends,
outliers, and statistical properties of the feature distribution.
Then, to overcome the limitations, several boxplot-based works
are further proposed, namely, contour boxplot (Whitaker et al.,
2013) and curve boxplot (Mirzargar et al., 2014). The former one
(contour boxplot) presents a generalized method on extending
functional data depth to contours and demonstrated methods for
displaying the resulting boxplots for 2-D climate simulation data
and 2-D computational fluid dynamics, as shown in Fig. 3(d).
The latter one (curve boxplot) proposes a generalized method to
extend traditional whisker plots or boxplots to curves traced in
ensemble vector fields. Especially, the curve boxplot employs a
nonparametric method to summarize ensemble pathlines. It is an
extension of a method from descriptive statistics (Noodles) and
data depth (contour boxplot) to multidimensional curves (curve
boxplot), as shown in Fig. 3(c).

Furthermore, a more flexible tool, i.e., streamline variability
plots (Ferstl et al., 2016), was proposed for visualizing the statis-
tical properties and uncertainties of multiple aggregation trends
of streamlines in simulation space. Technically, they used princi-
pal component analysis (PCA) to transform a set of streamlines
into a low-dimensional Euclidean space, and further used the
principal component representation to depict a new concept,
i.e., streamline median. It represents 2-D/3-D regions with high
confidence along time. Each streamline median can be extracted
from one aggregation trend of streamlines. The relative strength
of a trend is depicted by the thickness of its median line and
the boxplot. The 2-D and 3-D results are shown in Fig. 3(e).
Most of the boxplot series works used clustering algorithm to get
clusters or outliers and analyze them in feature space. Besides,
Liu et al. (2016) proposed a LCSS-based measurement to compute
similarity field and uncertainty field among ensemble pathlines.

2.2. Glyph-based visual mapping

To address the challenges posed by spatio-temporal simu-
lation data visualization, glyph-based approach is a reasonable
choice for visual mapping. Glyphs are characterized as symbolic
or iconic representations of one or more variables of a data set.
Their visual representation can be changed by altering the glyph
properties (Ropinski et al., 2011). In this section, we review glyph-
based techniques applied in simulation data visualization. Well-
designed glyphs could be used to visualize the uncertainty, sensi-
tivity, or stainability presented in the whole simulation processes.

Sanyal et al. (2010) designed multiple views of ribbon and
glyph-based uncertainty visualization, isocontour colormaps and
spaghetti plots. The circular glyphs scaled in size are one of
the most popular techniques to measure uncertainty in scalar
field ensembles. The maximum size of the glyphs is limited by
the spacing such that the overlap between glyphs is minimized.
Standard-deviation, the width of the 95% confidence interval and
interquartile range were encoded into the size of circular glyphs,
as shown in Fig. 4(d). The glyphs of concentric circles represented
the confidence interval and interquartile range while the user
could select bootstrap mean or ensemble mean across different
simulation runs.

Except for the scalar field ensemble visualization, glyph is
often employed to vector field ensemble visualization. For exam-
ple, a glyph-based technique (Jarema et al., 2015) was proposed
to perform interactive comparative visualization on 2-D vector
field ensembles. It encodes the variation modes into shapes and
directions of glyphs, as shown in Fig. 4(b). Nevertheless, this
comparison was limited to a 2-D scenario. Liu et al. (2015, 2017)
designed some glyphs to make a metaphor for user-defined de-
rived features (i.e., vortex) from vector field ensembles. Vortex is
a significant feature in vector field such as climate simulation data
and ocean simulation data. Then they compare derived features
by glyphs placed in small multiples in 3-D simulation space, as
shown in Fig. 4(c).

Besides, glyph is often used to make a metaphor in simulation
space, for example, glyph is placed at the selected location in
each time step in times-series data to encode the risk of sea
depth and further provide interactive visual analysis in ocean
surface simulation data (Höllt et al., 2013). For a more detailed
description of the entire distribution of the surfaces output in
multiple simulation runs, they provided two linked views. The left
linked view shows the depth position histograms of the simulated
sea surface, while the right linked view is a glyph representation
view. The horizontal axis shows the selected critical sea level,
where the color of each glyph encodes a risk whose distribution is
above the critical level (Fig. 4(a)). Except for the metaphor made
in sea level risk in ocean simulation, glyph can reveal the number
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Fig. 5. (a) Extending from one to three isocontours (Fofonov and Linsen, 2018).
(b) Color plus overlaid contours (left) and close ups which both show the same
regions of data (right) (Potter et al., 2009a). (c) Users are allowed to specify
a critical height value, whose iso-contour derived from the currently selected
surface is then highlighted (Höllt et al., 2013). (d) Height fields of the mean of
the surface temperature (Potter et al., 2009b).

of variation modes in ensemble simulation and the spread across
the whole simulation runs. Interactions are designed to explore
spatio-temporal simulation data in simulation space and feature
space.

2.3. Silhouette-based illustrative rendering

Silhouette-based visualization techniques can illustrate the
field data (i.e., the data in the scalar field, vector field, tensor
field, etc.) in simulation space, which help to reveal the patterns
and distribution of the data. Some frequently-used approaches
contain isocontour in the 2-D field and isosurface in the 3-D field.

Isocontour and isosurface should be extracted before the vi-
sualization and exploration. There had been a series of work ap-
plying statistical methodology directly onto isocontour detection
in spatio-temporal simulation data. Höllt et al. (2013) developed
a visualization system according to different requirements of
different stages. It allows users to specify a critical height value,
whose iso-contour extracted from the selected surface is then
highlighted, as shown in Fig. 5(c). Besides, in order to explore
the parameter space, such as viewing the influence of a certain
parameter or removing outliers, the isocontour extraction and
statistical analysis can be carried out either for the complete
ensemble, or for any user-defined subset of the ensemble.

Furthermore, Potter et al. (2009b) presented an approach to
explore ensemble simulation data by using a set of statistical
descriptors to summarize the data, visualizing these descriptors
using various of visualization techniques such as multiple 2-D
plots, slicing and 3-D iso-contouring, as shown in Fig. 5(d). In the
same year, Potter et al. (2009a) proposed a framework named
Ensemble-Vis which consists of a set of overviews and detailed
statistical views and provided some interactions. They used a
variety of techniques about isocontour such as the spaghetti plot
which allows to choose values for different simulation runs of
the ensemble. In contrast to the approaches presenting diverse
information in a single display, combining multiple linked views
yields a better presentation of the data and facilitates a larger
level of visual data analysis, as shown in Fig. 5(b).

In order to increase the accuracy of the measure, users expert
to choose more than one iso-contour simultaneously. Fofonov
and Linsen (2018) generalized the isosurface similarity to a field
similarity and further to a multi-field similarity. They are used to
catch local field differences between different data frames instead
of just providing aggregated statistical information, as shown in
Fig. 5(a). Most of the silhouette-based methods often employ data
reduction methods (in feature space) to summarize the isosurface
similarity or difference across simulation runs for comparison.

Fig. 6. Trial-and-error experiment parameter assignments in parameter space
exploration. Each experiment result corresponds to a different set of
parameters (Unger and Schumann, 2009).

3. Parameter space exploration

For the purpose of getting a convincing conclusion, domain
scientists often use the same simulation model with various
values of control parameters, generating large data sets, i.e. state
parameters, which capture different aspects of the behavior of the
target phenomenon (Matkovic et al., 2010).

Generally, users should make use of their intrinsic knowledge
about the process and the visual information on the screen (Unger
and Schumann, 2009). Considering that the inputs could be multi-
variate, high-dimensional parameter space exploration could be
tedious and complicated even for the experts. In this section,
we discuss the works based on the exploration of parameter
space, including parametric visual exploration and visual steering.
The former one can be further categorized into three subcate-
gories of techniques, including trial-and-error, focus+context, and
overview-to-detail. Similarly, many summarized papers might
belong to multiple different categories simultaneously.

3.1. Parameter visual exploration

Experts often need to explore the parameter space so that
they could identify a more appropriate region for the inputs for
the subsequent simulation runs, gaining more accurate simula-
tion outputs. A visual representation of the model captures the
dependencies, allowing engineers to speculate the relationships
between the behaviors of the models and parameters with their
domain expertise in the scenario of multiple simulation runs.
We could derive three main studies focusing on this process of
the exploration: trial-and-error, focus+context and overview-to-
detail.

3.1.1. Trial-and-error exploration
The most straight-forward way is to simulate with the same

model and different sets of parameters for many times and show
the results so that experts could narrow the input space down
to get a better response generated from the model. Unger and
Schumann (2009) aimed at providing visual support for the un-
derstanding of underlying simulation processes and the abstract
data sets, which needs the visual combination of both of them.
In this way, the efforts for gathering all the necessary informa-
tion for decision-making are reduced. They analyze and compare
multi-run and multi-variate time series on three different pro-
cess levels: the model, experiment and the multi-run. Multiple
experiment views are coordinated at the model level, providing a
comparison of the experiments of a model. Different experiment
results correspond to different sets of parameters, as shown in
Fig. 6. Users can assign the parameters in a trial-and-error way.
Eventually, the experiment view is used as an overview at the
level of multi-run simulation data.
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Fig. 7. Focus+context exploration techniques used in spatio-temporal simulation
data visualization. (a) Drag operations change the value of simulation inputs in
forward design (left), or the simulation outputs in inverse design (right) (Coffey
et al., 2013). (b) Different ways of depicting a family of surfaces: a single polyline
in the parallel coordinates showing one selected surface, and the 3-D surface
view and the 2-D height map view of the selected surface (Matkovic et al., 2009).
(c) Parameter view for three clusters of flame simulations, and renderings of
representative cluster members (Bruckner and Möller, 2010).

3.1.2. Focus+context exploration
It is worth mentioning that the papers summarized in this

sub-section are just to use F+C techniques in parameter space
exploration. Focus+context (F+C) visualization could handle large
data sets with the nature of high dimensionality, guiding the
users and supporting interactive analysis. Matkovic et al. (2009)
proposed a parallel coordinates plot (PCP)-based parameter space
exploration technique that enables a thorough investigation of
simulation outputs, i.e, the families of data surfaces. Users are
allowed to brush the parameter space in PCP by using a F+C
scheme, as shown in Fig. 7(b).

As the model complexity grows, it becomes incredibly hard
to figure out the dependencies between the simulation model
behavior and the data sets. Matkovic et al. (2010) further pro-
posed a simulation model view to bridge this gap. The view
provides a 2-D graph where each node represents a generation
block of the simulation model. In each node, the values of both
the control parameters that are used to tune the simulation and
state parameters which capture the behaviors of the model are
displayed directly. For multiple runs, they define a family of
curves and one curve for each run. The curve view combined
with multiple linked views and composite brushing is designed
to display curves in focus and those curves form the context
(F+C).

Besides, many physically-based simulation software tools,
which are designed for generating realistic animations, provide
no visual guidance in the parameter selection process, mak-
ing users have to resort to a time-consuming and cumbersome
trial-and-error strategy. To solve this issue, Bruckner and Möller
(2010) presented a result-driven visual approach for the vi-
sual exploration of parameter spaces. The input parameters of
simulation can be achieved by an interactive result-driven F+C
method, as shown in Fig. 7(c). The system samples the parameter
space and employs a novel approach for clustering the resulting
volumetric time sequences in order to figure out characteristic
variations related to their temporal evolution.

The problem of visualizing sets of simulation results is an
active area of research with recent applications to engineer-
ing design. Different from small multiples and multiple linked

Fig. 8. Approaches for overview-to-detail exploration. (a) Three loops A, B, C
are used to distinguish three levels of the interactive steering process (Matkovic
et al., 2008). (b) Images in the first line show raw image data from a brain
scan, and the ground truth segmentation respectively. The second line shows
two output segmentations from the model under two different parameter
configurations (Bergner et al., 2013). (c) Visual analytics system designed for
multi-resolution climate ensemble parameter analysis with nested parallel coor-
dinates plots (Wang et al., 2017). (d) Mapping the neighborhood of three targets
into X, showing the sensitivities to combined variations of Xi and Xj (Berger
et al., 2011). (e) Iterative visual reconciliation of groupings based on climate
model structure and the output (Poco et al., 2014a).

views (Doleisch et al., 2003), Coffey et al. (2013) argued that
the directness of the interface makes it possible to do effective
ensemble visualization in-place, which means using essentially
a single-view interaction and visualization space rather than
visual layouts based on small multiples and multiple linked
views. They designed an interface for exploring large explo-
ration spaces as encountered in the tasks that require tuning pa-
rameters of computationally-intensive simulations, as shown in
Fig. 7(a).

To help domain scientists understand the connection between
multi-resolution convective parameters and the large spatial–
temporal ensembles, Wang et al. (2017) proposed an integrated
visualization system, presenting intricate climate ensembles with
a comprehensive overview and on-demand geographic details.
Different from the idea of overview-to-detail, domain scien-
tists are more interested in visually quantifying the difference
resulted from parameter changing. To tackle the challenge of
visualizing multi-resolution high-dimensional parameter space,
they propose a new type of parallel coordinates plots named
nested parallel coordinates plot, which enables visualization of
intra-resolution and inter-resolution parameter correlations of
different parameters, as shown in Fig. 8(c). Heat maps and den-
drograms are linked together to help domain scientists gain
an overall understanding of large multi-resolution ensembles.
Additionally, multiple side-by-side geographic views are provided
to show spatial and temporal details on demand.
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3.1.3. Overview-to-detail exploration
A common goal in visualization is the design of techniques

that provide both overview visualizations and support for de-
tailed feature exploration. Researchers often prefer to make de-
signs that present an outline of the data first, just follows the
principle: ‘‘Overview first, zoom and filter, then details on de-
mand’’. The overview usually assists the experts into grasping the
overall situation so that they could make a quick decision about
narrowing the potential regions down. Generally, it is impossible
to run all possible simulation runs at the beginning and analyze
the results due to the complexity of the model, which could
cause unnecessary wasting of time and computation resources.
In this case, Matkovic et al. (2008) proposed a tightly coupled
steering loop with interactive visual analysis. They start from a
non-optimized initial prototype and the corresponding simula-
tion model and go through an iterative process in detail, as shown
in Fig. 8(a). The prototyping continues through the refinement of
the simulation model, of the simulation parameters and through
trial-and-error attempts to an optimized solution, going back and
forth between three different levels of abstraction (simulation
data, control parameters values, simulation model).

Besides, a visualization system named ParaGlide
(Bergner et al., 2013) also follows the design principle: ‘‘Overview
first, zoom and filter, then details on demand’’. Specifically, the
ParaGlide is designed for interactive exploration of parameter
spaces (overview) of multi-dimensional simulation models, which
endeavors to facilitate the process of refining models by guiding
data generation using a region-based interface for parameter
sampling (details), dividing the model’s input parameter space
into partitions that propose distinct outputs. It also allows for
clustering the output space into groups of similar model results
manually, as shown in Fig. 8(b).

For some intricate cases, such the exploration of high-
dimension parameter space, experts usually need to make use
of the parameter space projection so that they could do dimen-
sion reduction with a large number of complex computations
to the parameter space before the process of simulation. Poco
et al. (2014a) proposed an iterative, human-in-the-loop refine-
ment strategy for reconciling alternative similarity spaces, which
leverages the high bandwidth of human perception system and
exploits the pattern detection and optimization capabilities of
computing models. Since the scientists need to understand the
dependency relationships between model structure similarity and
model output similarity, this work stems help them to under-
stand the dependency between alternative similarity spaces for
climate models, facilitate iterative refinement of groups with the
help of a feedback loop. It also allows flexible multi-way interac-
tion and exploration of the parameter space for reconciling the
importance of the model parameters with the model groupings
(Fig. 8(e)).

Similarly, Berger et al. (2011) presented an interactive ap-
proach to enable a continuous analysis of a sampled parameter
space with respect to multiple target values. They employ meth-
ods from statistical learning to predict results in real-time at
any user-defined point and its neighborhood, and describe tech-
niques to guide the user to potentially interesting parameter
regions in the context of multiple target dimensions and other
application-specific criteria, and visualize the inherent uncer-
tainty of predictions in 2-D scatterplots and parallel coordinates,
as shown in Fig. 8(d).

In brief, the techniques about parameter visual exploration
could be summarized as trial-and-error (Matkovic et al., 2010;
Unger and Schumann, 2009), which could be applied when the
complexity of the parameter space is relatively low, overview-to-
detail, which has been accepted widely according to the informa-
tion seeking mantra, and F+C, which could be more appropriate

when detail is top priority. No matter F+C or overview-to-detail,
most of these literatures had designed interactive explorations
schemes in feature space to verify and analyze the simulation
outputs.

3.2. Visual steering

Considering that it could be anything but intuitive for experts
to make decisions by simply observing the visualization results
generated by parameter visual exploration systems, an interactive
system is usually required to support parameter visual refine-
ment and assist in the analysis. Visual steering is an intuitive and
interactive scheme to help domain experts explore the parameter
space in spatio-temporal simulation data.

Visual steering approaches can be divided into two subcate-
gories. First, experts could manipulate the outputs of the models
directly. By dragging the items in the simulation space or chang-
ing their geometry properties, it is convenient to refine the inputs
reversely. Second, experts can also establish a surrogate model,
such as regression model, to do some adjustments indirectly.

The system designed by Coffey et al. (2013), concentrating
mainly on F+C visual steering, integrates forward design via direct
manipulation of simulation inputs in the same visual space with
inverse design via ‘‘tugging’’ and reshaping simulation outputs,
as shown in Fig. 7(a). Also, Bruckner and Möller (2010) pre-
sented a work to generate the results in an interactive visual
steering environment, which combines 3-D animated views with
an abstracted representation of the identified spatio-temporal
clusters, as shown in Fig. 7(c). Besides, an overview-to-detail
design (Matkovic et al., 2008) was integrated into a visual steering
method in a prototyping environment for automotive industry
system design. The three levels of iteration (simulation data,
control parameters values, simulation model) provide different
levels of interactivity, as shown in Fig. 8(a).

To broaden the scope of the analysis, reduce subjectivity, and
facilitate comparison of model output with reference data, Kothur
et al. (2014) proposed a novel visual steering approach. It allows
modelers to create multiple spatial clusterings of the temporal
profiles in model output and reference data, consolidating the
various clusterings for each data set with an ensemble approach,
and interactively explore and compare the consolidation results,
as shown in Fig. 9(a).

Sometimes, experts are willing to establish a surrogate model
between the inputs and the results, by analyzing which they
could get the information like relativity and sensitivity of the
parameters and the outputs. The regression model would be a
typical choice for this situation. Matkovic et al. (2014) introduced
a novel approach to hybrid visual steering of simulation en-
sembles. They combine interactive exploration and analysis with
automatic optimization based on regression models. An adaptive
exploration of simulation space and parameter space is intro-
duced by using a regression model and the use of optimization
to find an optimum within a subset of the space, as shown in
Fig. 9(b). This novel scheme covers the spectrum between a fully
automatic simulation and the manual adjustment of simulation
parameters.

In conclusion, the essences contained within visual steering
is that it is a possible channel for experts to get a better under-
standing for the relationship between the input parameters and
outputs generated by the model, paving the way for further ad-
justment of the parameters as well as the models. The techniques
about visual steering could be summarized as direct visual steer-
ing, which could be intuitive, and indirect visual steering with
a surrogate model. Most of these methods use interactive tech-
niques to explore feature space and then verify the simulation
output results.
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Fig. 9. Visual steering techniques used in spatio-temporal simulation data
visualization. (a) The consolidation overview component. Users can choose
the parameters, i.e., the similarity criteria to compare the model data and
reference data (Kothur et al., 2014). (b) The left view shows six parameters with
constraints and optimum values. The right view is designed to compare the sim-
ulation results (in orange) and the regression model results (in blue). (Matkovic
et al., 2014).

4. Feature space exploration

To improve the accuracy and efficiency of the models in nu-
merous practical fields, such as ocean current, climate forecast,
combustion properties, etc., scientists are in the face of analyzing
and processing the extremely large data sets generated by repeti-
tive simulation experiment and various parameters. Therefore, in
order to reduce data sets and efficiently interact with users, many
new techniques are well designed to extract specific feature. The
major challenges and relevant techniques will be discussed in
three aspects, feature specification, data processing and reduction
and interactive feature exploration.

4.1. Feature definition, extraction and tracking in simulation data

Before exploring feature space in simulation processes, it is
necessary to define different features based on the multi-run,
multi-variate and multi-time simulation data. Some derived fea-
ture needs to be further extracted by well-designed algorithms
or approaches. Visualization tends to focus on essential parts of
the data sets instead of showing all the information and details
at the same time. Considering that visualizing high-dimensional
and large data sets is no doubt a challenge for users, feature-base
exploration is useful to reduce the data sets by well-designed
algorithms and help users extract and specify the most interesting
features.

In this section, we will discuss some representative approaches
of feature extraction in simulation data, such as the use of fea-
ture definition language (FDL), time-series feature specification,
feature surface extraction, topological feature analysis and uncer-
tainty feature extraction, as shown in Figs. 10 and 11.

In order to better define the feature, a feature definition lan-
guage (FDL) (Doleisch et al., 2003) can be designed. It allows
the definition of one or several features, which can be complex
and hierarchically described by brushing multiple dimensions, as
shown in Fig. 10(a). FDL was further used by Muigg et al. (2008)
to reduce visual clutter and occlusion. This work defines feature

Fig. 10. Typical approaches of feature space exploration. (a) A feature defi-
nition language (FDL) is designed to describe features by brushing multiple
dimensions (Muigg et al., 2008). (b) The domain specific feature (eddy) is
extracted from ocean simulation data (Williams et al., 2011). (c) Ensemble
uncertainty is measured through individual variance and joint variance (Hummel
et al., 2013). (d) The domain specific feature (eddy) is extracted from ocean
simulation data (Woodring et al., 2016). (e) Feature surfaces (Oster et al., 2014)
can be extracted to analyze premixed combustion simulation data without
reconstructing the data on the original grid.

using FDL when interactively visualizing scientific data by four
level method of focus + context, including three different kinds
of focus integrated by multiple linked views and the context to
get feature specification.

Time-series data are another significant feature in simulation
data visualization. Unger and Schumann (2009) used three pro-
cess levels, i.e., model, experiment and the multi-run simulation
data, to design the visualization based on both underlying pro-
cess and the needs of the users. The visualization of the model
level coordinates multiple instances for the comparison of exper-
iments view, while the multi-run simulation data view provides
an overview of the data, whose details can be analyzed in time
series.

Feature extraction approaches are often employed in ocean
simulation data, whose domain specific features are eddies.
Williams et al. (2011) presented an analysis of flow data to
show the three-dimensional structure and distribution of ocean
eddies, as shown in Fig. 10(b). The characteristics of each eddy are
recorded to form an eddy census that can be used to investigate
correlations among variables of eddies, such as thickness, depth,
and location. However, the method is limited by availability and
fidelities when data sets are too large to handle. Thus, Woodring
et al. (2016) developed an in-situ eddy census workflow. Its green
regions indicate strong rotations and blue regions indicate strong
shear, while the boundary between regions indicates an eddy, as
shown in Fig. 10(d).

A feature surface (Oster et al., 2014) was extracted to ana-
lyze numerical simulation data of premixed combustion without
reconstructing the data on the original grid. It uses mesh ex-
traction to especially handle the enormous size of the DNS data
of premixed combustion, as shown in Fig. 10(e). Their works
describe the original data by the flame surface mesh, a sparse data
representation, and reconstruct them to the dense scalar fields.
And through the different distance of each mesh vertex, one can
analyze and compare the behavior of the scalar fields.

Uncertainty, generated from the process of ensemble simula-
tion, can be visualized to analyze the ensemble flow behaviors
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Fig. 11. Topological feature extraction and analysis. (a) Scalar functions are
defined on simply connected domains of arbitrary dimension based on the
topological landscapes metaphor (Harvey and Wang, 2010). (b) A hierarchical
merge tree is constructed by recording the merging of contours for each time
step (Bremer et al., 2011). (c) The persistence atlas (Favelier et al., 2019)
analyzed the structure of the ensemble in terms of critical point layouts
and provided low dimensional embedding of the members, and automatically
identified distinct trends in critical point layouts.

in feature space. Hummel et al. (2013) developed a Lagrangian-
based uncertainty measurement on vector field ensembles. It
connects and transports characteristics of individual Lagrangian
neighborhoods to joint flow behavior presented in the ensemble.
Thus, both individual variance and joint variance are visualized in
feature space and further employed to measure the uncertainty
feature in CFD simulation data, as shown in Fig. 10(c). Kumpf
et al. (2018) proposed a novel workflow to improve the accuracy
of meteorology forecast. It computes the sensitivity of a scalar
forecast quantity in simulation data, locating a field where the
forecast errors originated, and thus, improves the forecast model.

Essentially, feature tracking algorithms can be divided into
two main categories: tracking by geometry and tracking by topol-
ogy (Favelier et al., 2019). The former calculates distance among
geometric attributes, while the latter topologically computes
tracking simulation data using contour trees, reeb graphs and
critical points, etc. Harvey and Wang (2010) visualized scalar
functions defined on an ensemble of terrain models and com-
pletely collected the identical contour trees and topological per-
sistence to the input scalar field, as shown in Fig. 11(a). They
used a newmetaphor called topological landscapes" (Weber et al.,
2007), whose basic idea is to construct a terrain with the same
topology as a given data sets and to display the terrain as an easily
understood representation of the actual input data.

Hierarchical merge tree and Reeb graph are two commonly-
used approaches in topological analysis, while merge tree is fur-
ther used to reduce and segment data in simulation data analysis
when the feature is highly compacted and flexibly represented. A
hierarchical merge tree is constructed by recording the merging
of contours for each time step (Bremer et al., 2011), as shown
in Fig. 11(b). It shows that topological analysis is an appropriate
method used for exploring the parameter space to segment, select
and track features.

Critical points, robustly extracted by topological methods,
have been used in many important applications. However, there
are some thresholds issues in critical point extraction. The visual-
ization is extremely costly when many single sets of features are
extracted for each set of thresholds, and any change in a threshold

Fig. 12. Feature space analysis of data reduction for simulation data. Data clus-
tering and classification, PCA, and some others. (a) In-situ sampling (Woodring
et al., 2011) in large-scale particle simulation: the images show the comparison
between full resolution data and the sampled data. (b) PCA is used to compute
uncertainty (the linearized deformation or shape change) in ensemble vector
fields which were generated by a stirring apparatus simulation (Hummel et al.,
2013). (c) PCA is used to convert streamlines into a structure preserving
Euclidean space (feature space or PCA space) (Ferstl et al., 2016). (d) Clustering
is used to combine all clusters (each one has its unique color) of one data set
into a single consolidated clustering (Kothur et al., 2014).

requires the retreatment of data. A commonly-used topologi-
cal technique named Morse theory addresses it by expressing
a similar set of features. The persistence atlas (Favelier et al.,
2019) analyzes the structure of the ensemble in terms of critical
point layouts, and provides low dimensional embedding of the
members, and automatically identifies distinct trends in critical
point layouts, as shown in Fig. 11(c). However, there still be a gap
that insufficient of the trend variability of critical points. They fill
it by providing a 2-D layout of characterized ensembles as critical
points to identify and visualize the global trends and outliers
by measuring the distance among dissimilarities. Most of the
works categorized into the subcategory ‘‘feature definition, ex-
traction, tracking" exploit silhouette-based illustrative rendering
in simulation space to illustrate the feature or patterns. Actually,
isocontour and isosurface can be considered as an important
feature in both simulation space and feature space.

4.2. Data sampling and reduction in feature space

Data procession and reduction are essential when comparing
the differences and similarities of the aggregation of data sets.
The current challenges of reduction are avoiding limited scope,
and of losing major factors. It is worth mentioning that the papers
summarized in this sub-section are just to use data sampling or
data reduction techniques in feature space exploration.

It is wildly spread that using data reduction techniques such as
sampling, clustering, classification and dimension reduction can
identify the time-varying behavior characteristics, major trends
and outliers in data. For example, an in-situ sampling approach
(Woodring et al., 2011) was designed to overcome the I/O band-
width limitation at simulation run-time. In-situ method can re-
duce the storage bandwidth and stores raw data in post-analysis.
The images in Fig. 12(a) show the comparison between full res-
olution data and the sampled data. A clustering ensemble com-
bines all clusterings of one data set into a single consolidated
clustering. A visual interface, as shown in Fig. 12(d), facilitates
the comparison of model data and reference data (Kothur et al.,
2014).

Principal Components Analysis (PCA) uses the idea of dimen-
sionality reduction to transform multiple indicators into a few
comprehensive indicators. Hummel et al. (2013) used PCA to
compute dense path line integration, which ensembles properties
of the advected neighborhood together, by representing and es-
timating statistical variance of advected point clouds, as shown
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Fig. 13. The techniques combine InfoVis and SciVis schemes to analyze sim-
ulation data. (a) Ensemble graph (Shu et al., 2016) was designed to help
understand spatiotemporal similarities across ensemble runs. (b) The parallel
coordinates plot commonly-used in InfoVis is used to compare the correlations
and uncertainties among multiple climate simulation data (Poco et al., 2014b).
(c) A nested parallel coordinates plot (InfoVis technique) to visualize the multi-
resolution simulation data according to user control in one view (Wang et al.,
2017). (d) Multi-charts (Demir et al., 2014): combine line charts and bar charts
to show statistical information on ensemble members.

in Fig. 12(b). Furthermore, PCA was used to convert stream-
lines into a structure-preserving Euclidean space, streamlines can
be performed in feature space to detect trends and outliers of
clusters (Ferstl et al., 2016), as shown in Fig. 12(c).

4.3. Interactive feature exploration

To extract feature flexibly, there are requires of efficient means
of interaction. Users choose the interesting part of data, then
specify features extracted correspondingly. Especially driven by
the experts working with the visualization system, considerations
must be taken when designing one.

Interactive feature exploration is widely used in various prac-
tical fields. Linking several views combining information visual-
ization (InfoVis) with scientific visualization (SciVis) techniques
can help analyze the simulation data interactively. Shu et al.
(2016) used ensemble graph (InfoVis technique) which combined
with multiple-linked views showing details to help understand
spatiotemporal similarities across runs in time-varying ensemble
simulation data (Fig. 13(a)). Multi-charts (Demir et al., 2014)
overcomes the occlusion effects in 3-D scalar ensemble fields
by using line charts to globally display the correspondences of
spacial points, and using the bar charts to display the statistical
information of ensemble members, as shown in Fig. 13(d). The
parallel coordinates plot is used to compare the correlations and
uncertainties among multiple simulation data sets (Poco et al.,
2014b), as shown in Fig. 13(b). For each output variable, parallel
coordinates enable scientists to analyze the multi-model similar-
ity based on the region-wise distribution of the variable. Wang
et al. (2017) used a novel nested parallel coordinates plot (InfoVis
technique) to visualize the multi-resolution simulation data, as
shown in Fig. 13(c). It visualizes the connection between the large
spatial–temporal ensembles. Most of literatures in this category
often share the schemes in data sampling and data reduction to
reduce visual clutter or decrease the computational complexities
and analytical complexities.

5. Discussion and conclusions

Multi-space techniques are summarized in this survey since
they are either used individually or synthetically in simulation
data visualization, including techniques across multiple space
analysis, i.e., simulation space, parameter space and feature space.
Spatio-temporal visualization on simulation data analysis can
help domain experts or users to get a better insight into the data
characteristics, i.e., the data distribution, data pattern, etc. or the

simulation modes. They are used to compute and analyze the
model sensitivity, the model uncertainty and the model stability.
Therefore, we summarize a systematic overview of the essential
commonalities shared by those works.

We notice that most of the simulation space techniques fall
into visual design schemes, e.g., visual trend summarization,
glyph-based visualization and illustrative rendering by family of
surfaces. The parameter space exploration methods can be cate-
gorized into trial-and-error, focus-and-context (F+C), overview-
to-detail explorations, and visual steering schemes, while the
feature space method includes the schemes on feature defini-
tion, feature extraction, feature tracking, data sampling, and data
reduction.

To our best knowledge, there is no survey papers summarizing
the spatio-temporal simulation visualization literatures from the
viewpoint of multi-space techniques. Overall, we hope that this
survey inspires novel ideas on simulation data visualization by
using multi-space techniques.
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