
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Visual Explanation for Open-domain Question
Answering with BERT

Zekai Shao, Shuran Sun, Yuheng Zhao, Siyuan Wang, Zhongyu Wei,
Tao Gui, Cagatay Turkay and Siming Chen

Abstract—Open-domain question answering (OpenQA) is an essential but challenging task in natural language processing that aims to
answer questions in natural language formats on the basis of large-scale unstructured passages. Recent research has taken the
performance of benchmark datasets to new heights, especially when these datasets are combined with techniques for machine reading
comprehension based on Transformer models. However, as identified through our ongoing collaboration with domain experts and our
review of literature, three key challenges limit their further improvement: (i) complex data with multiple long texts, (ii) complex model
architecture with multiple modules, and (iii) semantically complex decision process. In this paper, we present VEQA, a visual analytics
system that helps experts understand the decision reasons of OpenQA and provides insights into model improvement. The system
summarizes the data flow within and between modules in the OpenQA model as the decision process takes place at the summary,
instance and candidate levels. Specifically, it guides users through a summary visualization of dataset and module response to explore
individual instances with a ranking visualization that incorporates context. Furthermore, VEQA supports fine-grained exploration of the
decision flow within a single module through a comparative tree visualization. We demonstrate the effectiveness of VEQA in promoting
interpretability and providing insights into model enhancement through a case study and expert evaluation.

Index Terms—Open-domain Question Answering, Explainable Machine Learning, Visual Analytics

✦

1 INTRODUCTION

Question answering (QA) is an area of information retrieval (IR)
and natural language processing (NLP) that focuses on building
a model that automatically answers questions posed by humans
in natural language formats. Open-domain QA (OpenQA) allows
machines to provide accurate answers to users’ questions without a
given context and is considered the ultimate goal of QA research.
With the support of this technology, modern search engines, such
as Google and Bing, can not only return a list of relevant snippets
or hyperlinks based on user queries as questions, but also generate
appropriate answers to these questions that harmonize the search
results. [20]. These search engines utilize queries as an input to an
OpenQA model with the output of the model as the direct answer,
thus offering enhanced user experience and efficiency. For example,
asking the question “who was the first person to set foot on the
moon?” to a search engine leads to the answer “ Neil Armstrong”
along with links for further reading. This area is growing intensely.
ChatGPT [58], a recently released chatbot, has taken the Internet
by storm with its advanced conversational abilities. It is based on a
large QA model and can give consistent, accurate, creative answers.
QA, especially OpenQA, is now an important research topic.

The modern methods for OpenQA consist of two parts:
Retriever and Reader [94]. Given one question, the Retriever
searches relevant passages from large unstructured corpora as
top-k passages, and the Reader generates answers from these
passages. With the advancement of deep learning techniques such
as RNN [53] and Transformer [80], the Reader performs like a

• Zekai Shao, Shuran Sun, Yuheng Zhao, Siyuan Wang, Zhongyu Wei, Tao Gui
and Siming Chen are with Fudan University. S. Chen is the corresponding
author. E-mail: {zkshao19, srsun20, yuhengzhao, wangsy18, zywei, tgui,
simingchen}@fudan.edu.cn.

• Cagatay Turkay is with University of Warwick. E-mail: Ca-
gatay.Turkay@warwick.ac.uk.

Manuscript received April 19, 2005; revised August 26, 2015.

neural machine reading comprehension (MRC) model, such as
BERT [17], and infers answers. Meanwhile, the Retriever can be
considered an IR system that can be implemented by Transformer-
based modules and retrieves passages. Considering the diversity of
OpenQA models, this paper discusses models that adopt BERT as
the basic architecture for the Retriever and the Reader.

Despite the rapid progress in OpenQA, the existing architecture
can still be improved. For example, as illustrated by the latest survey
for OpenQA [94], the retrieval effectiveness of models, namely,
the ability to separate relevant passages from irrelevant ones for
a given question, remains limited. Sometimes the model does
not retrieve relevant passages, and sometimes the model detects
noisy passages that contain the exact terms in the question but are
irrelevant to the answer. Several studies [32], [41] have focused
on enabling the modern neural Retriever to have a greater retrieval
ability with a speed that is close to that of traditional IR systems.
However, the behavioral logic of existing techniques that focus on
the optimization of model architectures and training methods [60],
[63], [66] have not been sufficiently demonstrated. Therefore, this
paper provides visual explanations for model decision flow, thus
providing experts insights into model improvement.

Through a collaboration with domain experts and a review
of literature, we identify three main challenges in interpreting
OpenQA models. Firstly, since OpenQA is an open-ended task that
needs to select multiple relevant long passages from large corpora
and involves the understanding and processing of natural language,
the explanation of the model is difficult. Secondly, an OpenQA
model consists of multiple modules each of which is a complex
black box with numerous connections and parameters. Please note
here that while model refers to the system or pipeline required to
complete a whole OpenQA task, module refers to an independent
structure or component that completes a certain independent part
of a task within the model. Understanding the coordination of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 1. Understanding the decision process of a neural model for OpenQA. The User Panel (A) displays the statistical information about the model
and the dataset, as well as the color legends. The Summary View (B) provides a global summary of performance and module behavior related to
each subset. The Context View (C) presents questions from the selected subset and context of passages retrieved for a selected question. The
Instance View (D) summarizes the focused words of each candidate passage in different modules with ranking visualization incorporating text to
analyze the selected instance. The Tree View (E) explains the local data flow within a single module or multiple modules in the model with comparable
Sankey-tree layout.

the working of various parallel or serial modules is essential to
identifying the bottleneck of a model and improving it. And finally,
it is unclear how to go from explaining individual model parameters
to building a holistic and semantic understanding of the decision
process of a model.

Several visual analytic systems for explaining machine learning
have been developed. For example, CNNVis [47] tries to help
experts analyze CNNs by converting structures into directed
acyclic graphs combined with various algorithms and Li et al. [45]
proposes a unified structure to interpret deep NLP models for text
classification. However, their method focuses on explaining a single
model and is limited in exploring the internals of a multi-module
model. Recent studies have investigated model interpretability for
MRC tasks. For example, Ramnath et al. [61] uses t-SNE [79]
for layer embeddings and an attribution method to account for the
knowledge stored in BERT. QADiver [39] integrates analytical tools
such as embedding analysis of hidden layers, attention matrices,
and adversarial text, and offers an interactive and diagnostic
framework for MRC models. However, current studies focus on
MRC tasks and do not enable the analysis of the decision flow of the
Retriever, which is the bottleneck that constrains the performance
of OpenQA models [94] the most. In addition, in scenarios such
as OpenQA, where the instance includes multiple long passages
with a given question, analyzing the instance by visualizing layer
embeddings with scatterplots and visualizing the attention matrices
with heatmaps can potentially lead to visual clutter and often offers
limited insights into the global semantic information. Our work
aims to address these gaps in the visual analytics literature.

In this paper, we propose a general visual analytics system
called VEQA (Fig. 1) to allow NLP experts to semantically

understand the decision process of an OpenQA model and gain
insights into how a model could be enhanced. Inspired by previous
work [61] on semantic analysis of BERT using saliency methods,
we use attribution methods to attribute the final and implicit outputs
of each module of the OpenQA model in global and local levels.
We also use a tree generation algorithm to capture the abstracted
semantic information for understanding the decision of the OpenQA
model through the analysis of module responses and instances.

Our technique uses the opening two words of a question
as labels to partition the dataset into different question types
and calculates the performance metrics for each subset. We also
aggregate the attribution results within the module into responses
for each module layer. These two items provide an overview of the
module and the dataset, and guide experts in exploring the instances
in the subset. At the instance-level, we use module-level attribution
methods to summarize the focused words of each candidate passage
in different modules, and show their distributions in a novel
flow diagram with a ranking visualization incorporating contexts,
which aims to help experts in understanding the similarities
and differences in the decision flow across modules. Within a
single module, we use layer-level attribution methods for attention
matrices and hidden embeddings for generating dependency trees
to express the progression of knowledge between layers through
carefully designed comparable tree visualization. Through our
integrated interpretability methods, users set thresholds to filter
out keywords and key connections within each module, and we
present the results in novel, comparable flow diagrams and tree
visualizations. Overall, the visualizations provide experts an in-
depth understanding of the decision process by visually exploring
the complex attribution results, addressing the challenges related to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

the analysis of complex data with multiple long texts, and to the
analysis of complex models with multiple modules.

To the best of our knowledge, ours is one of the first attempts
to design a visual analytics approach to unravel the decision logic
of an OpenQA model. The major contributions of this work could
be listed as follows:
• Exploration of interpretability methods for Transformer-based

QA and an enhanced combination of attribution methods with
visualization to improve interpretability.

• VEQA, a visual analytics system to provide a multi-level
explanation of the decision process of a complex multi-module
model for OpenQA tasks.

• Case studies with a prevalent, representative OpenQA model and
in-depth collaboration with domain experts that demonstrates
the effectiveness of our approach to characterize the OpenQA
decision process as a visualization problem, categorize success
cases, and provide suggestions for model enhancement.

2 RELATED WORK

In this section, we first review the literature on general visual
explanation for machine learning. We then present a detailed
review of related work on constructing, explaining, and visualizing
Transformer-based QA models.

2.1 Visual Explanation for Machine Learning
Visualization for understanding, diagnosing, and improving ma-
chine learning models, especially deep neural networks, is eliciting
profound attention, as evidenced by recent surveys [11], [92].

Visualization is usually adopted to display the structure and
inherent details of models to help expert or non-expert users
understand them. For example, CNNVis [47] converts CNNs into
directed acyclic graphs and helps users understand the behavior of
layers and neurons through clustering and edge-binding algorithms.
Ming et al. [54] provided various levels of visualization to help
understand RNNs by deeply mining the stored information of
hidden states. Additionally, CNN Explainer [87] and Gan Lab [31]
are interactive visualization tools designed for non-experts to learn
and examine models.

Others have attempted to use visual evaluation methods
combined with interpretability algorithms to help understand the
decision-making process of models and provide insights into
diagnosis and improvement. Some have focused on monitoring
and diagnosing the training process of deep learning models,
such as DGMTracker [46] and DQNViz [82]. Many studies
have used post-hoc explanations to study model training results,
and most of them are model-specific. Under this category, of
special interest to our work are visualizations of the attention
mechanism, which we review further in Sec. 2.4. In addition, many
scholars have provided model-agnostic visual explanations, such as
RuleMatrix [55], DECE [10] and M2Lens [85]. Sprinner et al. [71]
designed a framework for explainable artificial intelligence (XAI)
and operationalized it as explAIner, plugged into TensorBoard [1],
the most widely used platform for model analysis and visualization.
As for the XAI system for NLP, Li et al. [45] provided a
unified interpretive method for interpreting NLP models for text
classification. Attempts have also been made in the broaderer
application scenarios of AI, such as healthcare [9] and autonomous
driving [28], [83].

Although the aforementioned studies have achieved great
success in providing visual explanations, most of them aimed

to explain a single model or provide an analytical paradigm for
multi-module models without explaining the internal structure.
Seq2Seq-Vis [72] is an exception; it is a visual debugging tool
for analyzing a five-stage text generation model by presenting
the attention map and the full context while offering a projection
analysis. However, this technique cannot be directly generalized
to complex tasks, such as OpenQA, due to the potential visual
complexity when interpreting massive, long contexts and multiple
candidate passages, which will be discussed in detail in Sec. 2.4.
To address the challenges posed by passages of long text and multi-
module models in OpenQA tasks, we integrate interpretability
methods and design novel views to explore and explain the decision
flow of models.

This subsection reviews existing XAI systems and why they
are difficult to apply directly to OpenQA tasks. In the next three
subsections, we narrow our view to OpenQA and Transformer,
and review mainstream OpenQA models (Sec. 2.2), related inter-
pretability methods (Sec. 2.3) and visual analysis work (Sec. 2.4)
to further illustrate the necessity of our work.

2.2 Transformers in OpenQA

OpenQA aims to answer a given question without any specified
context. According to Zhu et al. [94], OpenQA models have evolved
into a modern “Retriever-Reader” architecture. Given one question,
Retriever is utilized to retrieve relevant passages from a large
corpus such as Wikipedia, and Reader aims to infer the answer
from the received passages.

Transformer [80] is a powerful deep neural network. The self-
attention mechanism enables it to capture dependencies within long
sequences. Transformer-based models, such as BERT [17], gain a
large amount of knowledge by pre-training on large corpora, thus
allowing the model to be fine-tuned with a small amount of data to
achieve good results.

Recently, Transformer-based models have continuously allowed
for performance gains in many areas of NLP, including OpenQA.
Early studies [5], [56], [89] developed their Reader based only on
BERT [17] or other language models, whereas current studies [32],
[41] use them to develop both Retriever and Reader because
language models have better semantic representations compared
with sparse Retrievers based on keyword matching (e.g., TF-IDF,
BM25). As a baseline for recent work, dense passage retriever
(DPR) [32] uses a sophisticated sample mining and training
approach to enable the potential of the dual-encoder retriever
architecture, that is, using two independent BERTs to encode the
question and the context separately and calculate the similarity
between the two to select relevant passages. On the basis of
this architecture, subsequent work includeed improvements in
the calculation of similarity [33], [62], developing highly efficient
training methods [60], [63], [66], and hierarchizing the retrieval
process [40], [49]. However, such models act like a “black box,”
and it is difficult to understand what knowledge has been accurately
stored and how the models internally filter and process passages
and output the final results. They lack the interpretability that is
crucial for practical applications and further enhancement.

2.3 Interpretability Analysis Methods for Transformers

After the Transformer model penetrated the various fields of NLP,
researchers started to explore interpretability analysis methods for
Transformers in three directions.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Saliency Methods. Given a neural network parameterized by
fc(x) to predict the probability of a class c, saliency methods
produce a relevance score R(x) of a token x denoting the relevancy
of this token w.r.t. class c. The saliency methods commonly used in
NLP include gradient-based [15], [43], propagation-based [6], and
occlusion-based methods [2]. In other words, saliency methods can
quantify whether the token is important in the decision made by the
model for prediction. Saliency methods are common and considered
reliable to understand the model in processing downstream tasks
such as QA. Ramnath et al. [61] segregated passage words into
three categories: answer, supporting, and query words. Then, they
used the attribution method Integrated Gradients [76] on BERT [17]
at the layer level to identify the passage words that are of primary
importance at each layer for the answer.

Attention Mechanism. Given that the attention mechanism is
the core part of the BERT model and has strong representation,
it has always been the focus of experts. Shortly after BERT was
proposed, Clark [13] and Kovaleva [36] showed that the attention
distribution (attention map) of some heads/layers of BERT has
specific patterns. Although controversy remains about whether
attention is interpretable [29], [88] or not, a previous study [59]
claimed that the distribution of attention maps often represents local
aggregation, and the attribution score represents global aggregation.
In addition, due to the ideological influence of saliency methods and
the locality limitation of attention distribution, saliency methods
combined with attention distribution [25], [35], [75], [91] have
been continuously proposed.

Embedding Analysis. The combination of Dimension Reduc-
tion (DR) algorithms and visualization is a common method to
analyze embeddings [21] and offering interpretability [22]. In
the NLP context, researchers usually use PCA [27], t-SNE [79],
UMAP [52], and other DR methods to reduce the high-dimensional
word embeddings of each layer to 2D and visualize them in the form
of scatter plots to understand the semantic information learned by
the model through the change in distance between words. Ramnath
et al. [61] visualized the t-SNE plot for the three categories of
words listed above and special tokens of each layer and reported
that layers that distinguish confusing answers cannot be found.
Similarly, with PCA representations of tokens in different layers,
Aken et al. [78] suggested that BERT for MRC goes through
multiple phases while answering a question.

In general, using saliency methods to explain the importance of
each token in the text results in a vector, while methods, such
as attention and its variants, describing pairwise relationships
between tokens result in a matrix. Ye et al. [91] verified the validity
of the two abovementioned methods in QA tasks based on the
assumption of counterfactual explanation and pointed out that the
latter is a better explanation method than the former. Therefore,
we choose the saliency method to describe global information
and the attribution method for the attention matrix to describe the
information flow in detail. In addition, mainstream DR methods are
prone to visual confusion and loss of high-dimensional information
when understanding large texts. Consequently, we choose a similar
attribution method to analyze hidden embedding as a complement
to attention attribution.

2.4 Visual Analytics for Interpreting Transformers

Researchers have developed several visualization methods and
visual analysis systems to for experts to intuitively explore the
interpretability of Transformer-based models. Early Transformer

interpretability visualization tools focused on comprehensively vi-
sualizing the attention map from multiple levels (e.g., Bertviz [81])
and observing the global information learned by applying DR
methods to hidden layer outputs, such as t-SNE [79] used
in InterpretT [38]. Furthermore, Dodrio [86] is committed to
combining model data with linguistic knowledge to help experts
gain an enhanced understanding of the attention mechanism by
comparing the attention weights of each part of the model with
the syntactic structure and semantic information of the input text.
T3vis [44] is another visual diagnosing framework that integrates
almost all common analytical methods. Rather than individually
inspecting attention heads or layers like the systems discussed
above do, others [7], [16] pay attention to designing highly intuitive
attention visualization methods. Attviz [7] focuses on exploring
self-attention by different aggregations of the attention vector space
for a single token, but it may not be useful in QA because it ignores
token relations; Attention Flow [16] aims to provide a holistic view
of the attention mechanism by deploying a radial layout, but its
design is relatively complex and challenging to understand.

In visualization work on QA, Rücklé and Gurevych [65]
highlighted the critical phrases in the context used to answer
the question and compared between the two models. On this basis,
Liu et al. [48] introduceed a hierarchical representation of attention
through summary visualization to address the challenge of long
sentences, but it is incompatible with today’s prevalent models.
QADiver [39] is another diagnosing framework for QA models,
with diverse interactive visualization and analysis tools, including
embedding analysis, model internals, and adversarial text, for a
full pipeline of the attention-based QA model. However, directly
understanding the overview of attention with a pure attention map
is difficult, even though it provides cropping operations. Aside
from traditional MRC and QA tasks, other specific branches of QA,
such as visual question answering (VQA), have also elicited the
attention of researchers. VisQA [30] is a visual analytics tool that
explores questions of reasoning and bias exploitation by exposing
attention maps in Transformers. It summarizes each attention head
with a scalar that presents attention maps intensity and encodes
functions of heads with stacked bar-charts.

Considering the complexity of the OpenQA model, we argue
that a complete examination of the attention matrix of models one
by one is laborious and unnecessary. In this study, we adopt a
tree generation algorithm to summarize the multi-head attention of
layers into dependency trees and aggregate the responses of heads
to the layer level.

3 OVERVIEW

We introduce the background for the mainstream transformer-based
OpenQA models, analyze tasks to be completed in our visual
analytics system, and derive design requirements.

3.1 Background
The relevant background consists of two parts, attention mecha-
nisms in Transformer [80] and Transformer-based OpenQA models.

3.1.1 Multi-head attention mechanism
Generally, a Transformer-based module in the OpenQA model
is formed by stacking a series of layers, each of which contains
multiple attention heads working in parallel to capture information
from different feature subspaces [80]. Given the input lengths of N,
for the h-th head in the l-th layer, the attention module calculates



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 2. An Illustration of the OpenQA architecture used in the paper. Given
a question q and a candidate passage pi, the Retriever judges whether
pi is retrieved to enter the Reader according to Rel(q, pi). The Reader
extracts an answer from pi in Answer Head and judges whether to use it
as the final prediction according to the result of Selection Head.

an attention matrix Al,h = {ai, j} ∈ RN×N , where ai, j represent
interactions between pairwise tokens i and j to some extent. With
the attention matrix and its variants illustrated in Sec. 2.3, we
can analyze the information flow within modules in the OpenQA
model.

3.1.2 Model architecture
In this study, we focus on a two-stage OpenQA model based on the
“Retriever–Reader” architecture, where the Retriever and the Reader
are both BERT-based modules for retrieving relevant passages and
extracting answer spans from given passages respectively, as shown
in Fig. 2.

Dense Retriever. A typical dense Retriever adopts two inde-
pendent encoders, Question Encoder QE(·) and Passage Encoder
PE(·), to encode question q and i-th passage pi respectively, into
d-dimensional real-valued vectors, QE(q) and PE(pi). Specif-
ically, similar to the general language model, special tokens
([CLS] and [SEP]) are added to the beginning and end of
the question and passage, and another [SEP] is added into
the passage to separate its title and body, resulting in two
sequences of tokens: q = [[CLS],q1,q2, · · · ,qnq−2, [SEP]] (length nq)
and p = [[CLS], pi

1, pi
2, · · · , [SEP], · · · , pi

np−2, [SEP]] (length npi ). After
padding and tokenization, the two sequences are mapped to the
high-dimensional space as dense embedding and fed into Retriever.
Considering layer l, we have two embeddings: xl ∈ Rnq×d and
yl ∈ Rnpi×d . Then, the Retriever computes the relevance score
Rel(q, p) between the pairwise question and passage according to
their two final outputs, QE(q) and PE(pi). A common method is
to calculate the inner product of the pooled output of two final
embeddings, i.e., XCLS and Y i

CLS
. Then, Retriever filters out the top-k

most relevant passages and other passages are abandoned.
Extractive Reader. Given one question, the Reader func-

tions as both Re-ranker and Span-extractor1. It re-ranks
the top-k passages filtered by the Retriever then extracts
the answer span. Specifically, the Reader splices k ques-
tion and answer pairs into k sequences of length l:
ci = [[CLS],q1,q2, · · · ,qnq−2, [SEP], pi

1, pi
2, · · · , pi

np−2, [SEP]],1 ≤ i ≤

1. For convenience, “Reader” is used to denote the module with the task of
extracting answers instead of “Span-extractor” in the following.

k. Similar to the encoders in the Retriever, the Reader maps ci
into representation and we denote it as zl

i in layer l. Then, the
model calculates the probabilities of the passage containing the
answer as Pselected (i) by the Selection Head. A token that is the
starting position and ending position of an answer spans Pstart,i(s)
and Pend,i(t), from which a span score of the s-th to t-th tokens
from the i-th passage Pspan,i(s, t) is generated in the Answer Head.
Given ci as the input of the Reader, we denote the sequence output
as Zi ∈ Rl×d and concatenate the pooled outputs of k sequences as
Ẑ =

[
Z1

CLS
, . . . ,Zk

CLS

]
∈ Rd×k. The detailed calculation process can

be summarized as:

Pstart,i(s) = softmax(Zivstart)s

Pend,i(t) = softmax(Zivend)t

Pselected (i) = softmax
(

Ẑ⊤vselected

)
i

Pspan,i(s, t) = Pstart,i(s)×Pend,i(t)

where vstart , vend and vselected ∈ Rh are learnt vectors. Then, the
Reader predicts the answer span (s, t)i of each passage candidate
according to Pspan,i(s, t) and adopts the prediction of passage i with
the highest probability Pselected (i) as the final answer. By contrast,
the predictions of other top-k passages are abandoned.

3.2 Methodology

The methodology of our preliminary study follows three steps:
working with domain experts to distill the tasks, summarizing the
design requirements needed to support the tasks, and interviewing
external experts to justify the tasks and design requirements.
We have collaborated with six domain experts (E1-E6). E1 is
one of the co-authors and E2-E6 are external experts. We have
worked closely with E1 in conducting weekly discussions and
performing literature research for around four months. On the
basis of existing work and feedback from E1, we have refined the
tasks and design requirements presented in Secs. 3.3 and 3.4. We
have conducted interviews with five external experts (E2-E6) to
confirm the comprehensiveness and rationality of the tasks and
design requirements. In addition, all six experts have participated
in the case studies (Sec. 6) and evaluations (Sec. 7) after the system
was developed.

3.3 Task Analysis

Our primary goals are to help experts semantically understand the
decision process of OpenQA models and provide new insights into
model enhancement. We worked closely with E1, a co-author of
this paper, who has four-years of experience in NLP and QA, for
about four months to obtain her feedback and iteratively refine the
design requirements. Through discussions with her and a literature
review, we have come up with the following analytic tasks derived
from our goals.

T1: Explain the data flow within a single module. The
expert indicates that the ability of the Retriever is the main
obstacle that limits the performance of the whole architecture.
If no relevant passage containing the gold answer is retrieved, the
Reader will fail to give correct predictions. Therefore, the expert
is eager to understand the internal process of filtering out top-k
passages in the Retriever. For example, what is the basis for the
Retriever to calculate the relevance score for candidate passages? In
addition, considering that the final predicted answer comes from the
first ranked passages after re-ranking, understanding the decision



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

process of the Re-ranker is equally important and instructive to
improve the filtering ability of the Retriever.

T2: Compare the differences in information processing
between multiple modules. Although similar Transformer-based
modules are used in the OpenQA model, the internal decision
process differs due to the different training objectives and structures.
Usually, Reader re-ranks the retrieved top-k passages in a different
order from that in the initial results in the Retriever. Moreover, the
researcher is concerned about how the learned vectors work in the
Reader to complete the two tasks with the same sequence output.

T3: Explore alternatives and options with high prediction
scores. The expert is interested in whether the differences between
alternative passages (i.e., other top-k passages not ranked first
by the Re-ranker) and selected passages are distinguished by the
model and whether the final orders are attributed to coincidence.
Comprehensive knowledge of the decision flow can be obtained by
exploring all the top-k retrieved passages of one instance.

T4: Explore the relationship between the decision process
and type of tasks. A recent work [30] has found that the distribution
patterns of attention heads may differ depending on the different
task types in VQA. Therefore, the expert wants to infer if the
decision flow of the OpenQA model is related to the task type.
Identifying the association of model decisions with task types
provide insights into model enhancement, such as designing task-
specific models.

3.4 Design Requirements

On the basis of these main tasks, we have summarized the following
design requirements to be supported in our system.

R1: Summarize the features of the dataset and model
behavior. The system should provide an overview of the dataset
distribution and model performance to help experts get started. The
common methods used to describe the dataset without additional
labels or descriptive information differentiate subsets with the first
few words of questions [3]. The relevant statistics in OpenQA
include the top-k Retriever accuracy (the percentage of top-k
retrieved passages that contain the answer) and exact match (EM).

R2: Link module responses to task types. To further correlate
model decisions with task types (T4), we need to provide the
interactions between them, such as determining how the various
parts of the module respond differently to a particular type of a
problem and how a specific part of the module responds differently
to different types of questions.

R3: Browse the information flow within the model for an
instance. Once experts have selected the question category, they
should be able to explore the decision process for a single instance.
Therefore, we need to briefly show the information flow in
the Retriever and the Reader for a particular question and the
corresponding top-k passages to prepare users for exploring the
candidates (T3).

R4: Layer-level analysis of a single module for each candi-
date. Given that the Transformer-based module is constructed from
successive layers and that each layer of the module learns different
semantic knowledge [78], layer-level analysis is required (T1). The
system needs to support comprehensive inspection of important
data such as embedding, attention values, and their variants, and
must prevent visual clutter caused by long text.

R5: Provide comparable visualization to help with semantic
understanding. The exploration process of the OpenQA model
is a continuous comparison process. Users need to compare the

performance and module responses of different subsets (T4),
compare the decision flow of alternative passages in one instance
(T3), and compare the semantic information learned by different
layers within a single module (T1) and multiple modules (T2).

3.5 Expert Verification

To evaluate our motivation, tasks, and design requirements, we
invited five external experts (E2-E6) with diverse backgrounds
to conduct verification. E2 and E3 have two-years of experience
in NLP, E4 has four-years of experience, and E5 and E6 have
eight-years of experience. All experts are familiar with BERT and
Transformer. E4, E5, and E6 have published research publications
about QA, whereas E2 and E3 have not conducted related research.
During the background checks, we learned that all experts have
experience in understanding model mechanisms through attention
visualization, with E3 and E6 reporting their experience in using
BertViz [81] in their publications to corroborate the results.
In addition, multiple experts have experience in using general
interpretability techniques, such as SHAP [50] for E3 and saliency
methods for E5 and E6.

We conducted one-on-one interviews with each external expert
for about 30-50 minutes, and the interviews included a presentation
of existing works, their generalizability and a description of
distilled tasks and design requirements. First, we presented four
important related techniques, namely, Dodrio [86], LIT [77],
VisQA [30], and QADiver [39], and gave a detailed illustration of
the challenges faced by existing works in utilizing OpenQA models,
such as DPR. The experts were interested in these visualization
tools and appreciated our elaboration of the three challenges
in providing visual explanations for OpenQA models. We then
illustrated the tasks and design requirements, which resonated
well with the experts. In particular, E2 and E3 were interested in
summarizing the decision flow of an instance (T3, R3) because
they had not observed the model’s decision-making process from
a microscopic perspective before and believed that it is helpful
for model understanding and improvement. E6 wanted to gain
insight related to model improvement, so the association between
model response and data types (T4, R2) was of great interest. All
external experts had expectations about how our system could meet
the abovementioned requirements and solve challenges such as
long context and multiple modules. E4 commented, “My questions
related to text-based OpenQA are all included, and I’m curious
about how visualization experts will explore them.”

Overall, all the experts agreed with our design motivation,
distilled tasks, and design requirements. The experts with different
backgrounds and experiences emphasized tasks differently, but they
all had high expectations for the developed system. Furthermore,
we developed an explanation engine (Sec. 4) that supports the tasks
and the interface of our system, VEQA (Sec. 5).

4 EXPLANATION ENGINE

Before introducing the interface and interaction design, we discuss
the related technologies used in our system.

4.1 Data Preprocessing with Attribution Methods

Unlike some previous studies [16], [30] that only utilized attention
maps for reasoning and explanation, we select saliency and
attribution approaches to explain the module in terms of evaluating



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 3. The Workflow of VEQA. VEQA consists of three parts: Storage, Explanation engine, and Visual analysis interface. The data generated by the
meticulously trained and evaluated OpenQA model is stored in Storage and used to provide users with basic information about the model and dataset.
The Explanation engine adopts attribution algorithms on module outputs and layer outputs in the Storage and aggregates the layer attribution results
into layer responses and dependency trees. The above data is provided in each view of the Visual analysis interface for users’ exploration. After
selecting a subset of interest in the Summary View based on the information retained in the Storage and layer responses provided by the Explanation
engine, users further select instances in the Context View and gain an overview of data flow at the instance level by adjusting the saliency and
occurrence thresholds in the Instance View, before finally selecting a candidate passage in the Tree View for fine-grained comparison and exploration
by adjusting thresholds for edges of attribution trees.

the contribution of each input feature to the module output (R3)
and the contribution of each layer to the module output (R4).

Considering that multiple modules are used in the OpenQA
model and that a single module may carry multiple tasks, we use
(M,T ) to denote the module M that carries task T . As discussed
in Sec. 3.1, a complete OpenQA model consists of four (M,T )s
that determine the final prediction: two independent encoders in
Retriever, i.e., question encoder (Q,E) and passage encoder (P,E),
and one module in Reader that acts as Re-ranker (R,R) and Span-
extractor (R,S). In addition, we use F(M,T ) to denote the final output
of (M,T ), which serves as the attribution target.

For a given module M with a given task T , each token embed-
ding ei in input embedding e with length L is assigned a saliency
(scalar) Sal(M,T )(ei) by Integrated Gradients as follows [76]:

Sal(M,T )(ei) =
1
m

m

∑
k=1

∇ei F(M,T )

(
b+

k
m
(e−b)

)
· (ei −bi) (1)

where b refers to repeated [MASK] vectors as baseline and m = 50
refers to the execution of 50 steps in the Riemann approximation
of the integral, which is the general default setting and ensures
balance between accuracy and speed. Moreover, with the layer
conductance methods [18], [69], we obtain the attribution scores
of the task-independent output F l

M(e) of the l-th layer in module
M for task T , i.e., Attr(M,T )(F l

M(e)), which has the same shape as
F l

M(e).

Attr(M,T )(F
l
M(e))=

m

∑
k=1

∂F(M,T )

(
e(k)

)
∂F l

M

(
e(k)

) (
F l

M

(
e(k)

)
−F l

M

(
e(k−1)

))
(2)

where e(k) = b+ k
m (e−b) and m is set to 50 for the same reason

as before. Therefore, the outputs of the l-th layer in module M, i.e.,
embedding E l

M(e) and h-th head attention matrix Al,h
M (e), are ex-

pressed as Attr(M,T )(E l
M(e))∈RL×d and Attr(M,T )(A

l,h
M (e))∈RL×L

on the condition of task T . Eq. 1 is the Riemann approximation of
the integral of gradients with respect to inputs along the path from
a given baseline to the input. Similarly, Eq. 2 is approximated by

Fig. 4. An illustration for the construction of a generation tree from an
attention matrix. Multi-layer raw attention (A) is refined into attention
attribution (B) by Eq. 2, and then words and word pairs with high
attribution scores are selected as nodes and edges from top to bottom to
build the tree (C). For instance, “may”, with the highest sum of attribution
scores in the top layer, is selected as the root node, and “,” and “2018”
are selected as the child nodes due to their high attribution scores with
“may”. Due to space constraints, the figure shows the main part of the
tree.

the gradient integral flow of neurons in the layer. Interested readers
may refer to the original literature [18], [69], [76].

4.2 Exploring Layer-level Information Flow

Hierarchical representation of text is familiar to NLP experts.
Many studies [12], [68] have integrated hierarchical structures
of natural language into DNNs for better representations, and
others [19], [34] learned syntactic parsers for improved parsing
accuracy. Additionally, using hierarchical representations to analyze
DNN has become an area of interest in the NLP community. Zhang
et al. [93] constructed a tree to encode salient interactions extracted
by DNN, on the basis of Shapley values of words [50]. Considering
that displaying the original attribution matrix in the case of long
text causes visual clutter and that most elements of the attribution



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

matrix are minimal (close to zero), we adopt the tree generation
algorithm proposed by Hao et al. [25] to display the information
flow inside the module (R4). The tree generation is based on the
attention attribution derived in Sec. 4.1, as shown in Fig. 4.

First, we summarize the attribution scores of each attention head
within the l-th layer with L2-norm as Attr(M,T )(Al

M) = {âl
i, j}L×L.

Second, we take the L2-norm of the attribution scores of the
embedding output at the l-th layer as Attr(M,T )(E l

M) = {el
i}L, which

is a measure of how salient the l-th layer of module (M,T ) is to
input sequence t that corresponds to embedding e. Third, we select
the token i with the highest token-wise attribution score el

i as the
root node of the tree, and use a heuristic top-down greedy algorithm
to traverse all nodes that are not in the tree from the l-th layer to the
1-th layer. Lastly, we select tokens i and j with pairwise attribution
scores âi, j greater than a certain threshold to join the tree. Most of
the algorithm details are similar to those in the original paper [25],
except for Reader, where we remove the special treatment for the
last layer of the module, that is specific to classification tasks.

4.3 Interpreting Functions of Layers
To relate module behavior to task type (R2), we calculated the
importance of the l-th layer of a given module (M,T ) as LIl

M,T as
the average of the maximum attribution ai, j in Attr(M,T )(Al

M) for
all instances in the dataset. Other head statistics, such as the k−
number used in VisQA [30] to represent the distribution of attention
heads, are not considered, because only a few strong interactions
exist between tokens in each attribution matrix and the distribution
within each head is similar to that in others. Considering that
the OpenQA model consists of multiple modules, we limit the
finest granularity of exploration to the layer level. Thus, we do not
calculate the importance of each attention head separately.

5 VISUAL ANALYTICS SYSTEM

In this section, we introduce the workflow of VEQA and discuss
the visual design and interaction with the user interface in detail.

5.1 Workflow
Through iterative design and frequent meetings with OpenQA
experts, we establish the analysis workflow based on the generated
explanation and user interface of VEQA, as indicated in Fig. 3.

In general, experts expect the analysis process to proceed from
global to local (i.e., dataset → subset → instance → candidates
in an individual case). They wish to explore the difference in the
response of an individual module to different task types and the
difference in the response of different modules to the given task
type (R1, R2), which can be obtained by checking the statistics
and importance of each part of the module in the Summary View.
Then, the experts select an instance from the subsets of interest
in the Context View to analyze and see the decision process
within the whole model (R3, R5) in the Instance View with the
complementation of the Context View. The experts then continue
to explore the difference in the way that given question-passage
pairs are processed in different stages (R5) with attribution tree
comparison in the Tree View. The Tree View also allows them to
further explore the variation in information flow layer by layer in a
single module (R4).

5.2 User Interface
The interface includes the Summary View, Context View, Instance
View, and Tree View to support the visual exploration of OpenQA
(Fig. 1).

Fig. 5. Design alternatives for the Summary View. A: Our current design
(a1) of augmented sankey diagram with grouped barchart and legends
for barchart (a2). B: An augmented sunburst diagram.

5.2.1 Summary View
The Summary View (Fig. 1A) provides an overview of the response
of the module at each stage under different categories of subsets and
a visualization of the evaluation metrics (R1, R2). It helps experts
understand the distribution of the dataset and the differences in
the response of modules to subsets, thus guiding users in selecting
specific subsets for further exploration.

Visual design. We follow the experts’ suggestion to divide
the dataset into multiple subsets based on the first two terms and
visualize them through multiple Sankey diagrams with a tree-like
layout. The width of each node is proportional to the number of
questions it represents. Each subset is connected by a curve to
two bars that represent the corresponding performance metrics in
Retriever and Reader, i.e., top-k accuracy and EM, as shown in
Fig. 5A. To clearly show the performance difference of subsets,
we adopt a kind of bar chart design that is similar to the one in
VBridge [9]. We calculate the average performance metric for the
entire dataset as the standard value to delineate the bars with a
constant height and use the hollow part of the bars to indicate
performance below the mean. Meanwhile, shading is used for the
part above the mean, as the legend shows in Fig. 5a2. To facilitate
the exploration of module responses in relation to task type, we
place rectangles, the number of which encodes the number of layers
of each module, below each bar chart to encode the mean values
of layer responses in the corresponding subset with gradient colors,
which can be obtained by the layer aggregation method described
in Sec. 4.3.

Design alternatives. Fig. 5B shows another option that we
considered during the design process. Sunburst charts are a common
form of visualization for representing QA datasets in terms of
word divisions [3]. In such charts, words radiate outward from
the inner circle, and the angle of the arc is proportional to the
frequency of each word. In addition, radial linecharts are drawn
outside Sunburst charts to indicate two performance metrics for
each instance. However, compared with the Sankey diagram with a
tree layout, although a Sunburst chart can clearly represent the data
distribution, its radial layout makes it difficult for users to visually
compare the differences between various problems in the model
decision.

5.2.2 Context View
As a complement to the Summary View, the Context View (Fig. 1B)
lists all question instances in the dataset or selected subset and
the predicted results for each instance in a table and presents a
heatmap of the selected passage at a certain stage.

Visual design. The question table in the Context View has
three columns that present information about the instance and
prediction. The first column records the question text, and the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

second column shows the top-k accuracy of the instance at the
Retrieval stage by using a bar embedded in the table. The circles in
the third column indicate the overall evaluation metrics, i.e., EM.
The hollow circles indicate that the final result does not exactly
match gold answers, and the solid circles indicate the opposite. The
original text of a selected passage and its saliency score distribution
at a selected stage are shown below the question table, whose
content is controlled by the interaction with the Instance View.

5.2.3 Instance View
The Instance View (Fig. 1C) shows the overall data flow in the
OpenQA model for the top-k passages retrieved from the corpus
with a given question in the form of a ranking visualization
combining text and bar charts (R3, R5).

Visual design. The Instance View consists of four columns
representing the summary of important words in three tasks,
i.e., Retriever, Re-ranker, and Reader, and the final prediction
results. Inspired by LineUp [23] and Parallel Tag Clouds [14],
we summarize the individual alternative passage being ranked
to a set of words V = ti with saliency score SalM,T (ei) above a
threshold at a certain stage (M,T ) and place all the candidates
vertically in the ranking order of the current stage. The sizes
of the presented words are proportional to their saliency score.
Moreover, preliminary experiments have shown that the module
usually focuses on important words within one or two sentences
in long texts. Thus we use colors to encode word positions, i.e.,
we use the same color for words belonging to the same sentence,
which brings interesting insights that will be discussed in Sec. 6.1.

To further abstract the decision process of the model from the
top-k alternatives, we place barcharts above the first three columns
indicating the context-independent words with occurrences above
a certain threshold within that column and use two colors to
distinguish their positions. For example, words that appear in both
the question and the passages are encoded with side-by-side blue
and yellow rectangles and placed on the left, whereas in the middle
and on the right are blue bars representing words that appear
multiple times only in the question and yellow bars representing
words that appear multiple times only in the passages, respectively.
Users can hover over the bars to explore the corresponding word
occurrences in all three columns.

Red or green lines are used between the two columns to
characterize the input and output of each stage. Specifically, the
lines between the first and second columns present the results before
and after the re-ranking, with red indicating that the candidate does
not contain gold answers and green indicating the opposite. The
lines between the second and third columns are horizontal, and the
colors are similar to those before because Reader does not change
the order of candidates. The horizontal lines between the third and
fourth columns point to the final prediction of a single candidate,
and their color indicates whether the final result is an exact match
to the gold answers.

5.2.4 Tree View
On the basis of the generated attribution tree (Sec. 4.3) that abstracts
a large number of connections within the complex module into
a semantic tree structure, the Tree View allows users to further
explore the processing flow of the pairwise question and passage
throughout the whole model or in a certain module at a fine-grained
level via comparable tree visualization (R4, R5).

Visual design. We use color and size, respectively, to encode
the information embedded in the attribution tree. To effectively

Fig. 6. Two modalities for the Tree View. A: Two trees for two encoders in
Retriever placed vertically as a whole (a1, a2) and placed side by side
with the other two trees for Re-ranker and Reader (a3, a4). B: Evolution
of the attribution tree for 12 layers of one certain module.

perceive how the tree is constructed, we adopt the same color
schemes used in the Instance View to encode the positions of
tokens in the context and another gradient color that does not create
the confusion with the former to encode the layer l from which the
edge originates, as shown in the legend of Fig. 6. The width of the
link between two nodes presents the pairwise attribution score al

i, j
for word i and j in layer l, and the diameter of the node encodes
the token-wise attribution score el

k of corresponding word k in layer
l. No direct connection exists between el

k embedding attribution
and al

i, j in attention attribution, as discussed in Sec. 4.1. However,
this visualization approach can qualitatively gain insights into
both methods, which will be further illustrated in the Evaluation
(Sec. 6.1) and Discussion (Sec. 8) sections.

To increase information density and prevent visual clutter, we
only displayed the words contained in the attribution tree instead
of all the tokens because the number of the latter is usually more
than 100, whereas the total number of words that appear in all
trees is much smaller when the threshold of the algorithm is set
normally. Meanwhile, we aim to ensure comparability between
trees. Therefore, we determine the union of words that appeared
in the attribution tree of each module and then equally spaced and
aligned them. We encode the width of each tree based on its height
to facilitate a comparison of hierarchical changes.

The Tree View supports attribution tree comparisons at each
stage and layer-by-layer evolution in a single module with ad-
justable and independent thresholds for each module. When the
view shows the former, the four trees corresponding to the four
groups of (M,T )s are horizontally placed as three wholes, as shown
in Fig. 6A, where two attribution trees corresponding to (Q,E) and
(P,E) are vertically placed on the left side to align with the (R,R)
and (R,S) trees. When the user switches the view to layer-level
exploration, l attribution trees corresponding to the number of
module layers are arranged horizontally (Fig. 6B), and only the
threshold of the tree for that module can be changed by users.

Design alternatives. In the Tree view, the properties of each
tree’s nodes and edges are individually encoded by size and color
maps. As alternatives, we have also considered other forms of
hierarchical visualization [67] or graph visualization [26], such as
treemap, packing, and icicle, in addition to the node-link tree.
However, we need to encode the edges of trees to show the
interactions between words, not just hierarchical relationships.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

These implicit hierarchy visualizations are inapplicable, and we
excluded them. After limiting the design space to the explicit
node-linked tree visualization, we’ve considered various tree
layouts. First, we’ve ruled out radial layouts or force-directed
trees because they make it difficult to identify the contextual
structure of a passage. The two remaining options are a contextually
ordered horizontal layout or a vertical layout tree. Compared with
the vertical layout, the horizontal layout can better display the
hierarchical semantic structure, and the horizontal word order is
more in line with how people read. However, the experimental
results show that, in general, the height of the attribution tree is
small, and the number of leaf nodes is large. Therefore, when
multiple horizontal layout trees are placed side by side, the
screen space cannot be effectively utilized, and the difference
in tree structure cannot be intuitively displayed, which are critical
shortcomings in terms of design requirement (R5).

Color map design. In addition, we carefully considered the
use of color encoding. After repeated discussions with experts,
the sources (layer) of the edges and the locations (sentence) of
the nodes are determined to be the key attributes that need to be
visualized. According to color theories and classification of data
types proposed by Silva et al. [70], the layer attributes with relative
order belong to ordinal data and should be encoded with sequential
color scales. Given that the relative order of node positions is
unimportant, it should be treated as nominal data encoded with
qualitative color scales. Encoding a sentence in a similar way as
that for a layer makes the user implicitly order the node positions,
which does not make sense for understanding the model to identify
the clustering features of important words. It may mislead users
into thinking that these colors represent feature importance, because
coloring the background of words by importance is a particularly
familiar visualization for NLP experts. To alleviate the confusion
caused by multiple color maps, we choose a color scheme that was
as non-conflicting as possible, and applied the sentence colormap
uniformly to the Context View, Instance View and Tree View. In
addition, we provide clear legends in the user panel to provide
users a clear understanding of the colormaps used in the system.

5.2.5 User Interaction

VEQA provides a rich set of smooth interactions, thus allowing
users to perform multi-level exploration between different views.

Hovering. Users can hover over all elements that encode
numeric data with a color or size to obtain precise information. In
addition, hovering over a certain bar of the barcharts in the Instance
View highlights all the same words in the table below for users
to discover the differences in the distribution of focused words at
each stage. Similarly, when users hover over a node of a tree in
the Tree View, all the nodes in other trees representing the same
contextualized word are highlighted.

Clicking. Many interactions among views in VEQA can be
triggered by clicking. For example, users click on a link of the
sankey diagram in the Summary View to update the question table
in the Context View, which shows the question lists of the selected
subset. In addition, clicking on a row of the table in the Instance
View updates the original text and heatmap in the Context View.

Filtering. To enhance the perceived scope of information, we
use sliders to filter the data where thresholds are involved, as in the
Instance View and Tree View. Notably, the categories of questions
presented in the Summary View also rely on threshold constraints,
but the experts believe that the system can frame the categories

Fig. 7. Different layer response of four modules. A to D denote responses
of two encoders in the Retriever, the Re-ranker and the Reader, respec-
tively.

given appropriate thresholds and that threshold adjustment here is
unnecessary.

Guiding. As described in Sec. 5.1, the workflow of VEQA is
mainly one way: from the high level to the low level. To help users
quickly master the workflow and reduce their burden, the Summary
View and Context View are only displayed when the user first logs
into the interface. When the user selects an instance of interest to
explore, the Instance View is unlocked. Similarly, the Tree View is
unlocked after the user selects a candidate.

6 CASE STUDY

We conducted case studies with the six aforementioned NLP experts
(E1-E6). We demonstrateed how VEQA explains the data flow
in the DPR [32] architecture with the Natural Question (NQ)
dataset [37], which contains 300,000 naturally occurring questions
along with human-annotated answers from Wikipedia pages. Given
the limitation in computational resources, we used two officially
provided model checkpoints 2 trained on NQ via different training
schemes. The first checkpoint was trained on negative samples
mined by BM25 with high similarity to the question but do
not contain answers as well as random and positive samples for
other instances. The second checkpoint was trained on the data
comprising previous samples and hard negative samples mined
by the first checkpoint. We chose the same divided test set as
that in the previous work, including 3610 instances with 100
retrieved passages. We evaluated the top-20 retrieved passages
with attribution algorithms. The whole evaluation process consisted
of three parts. First, E1 followed our guide to observe each view
freely and established preliminary conclusions about the decision
process. Second, E4 followed the general workflow to explore the
model and find successful decision cases. Third, E6 tried to use our
system to explore how high-quality training data can help boost
retriever performance.

6.1 Part I: Abstracting the decision process

In the first part, E1 explored each of the three main views, except for
the context view that serves as a complement, to obtain preliminary
conclusions. After the initial exploration, E1 stated that our system
successfully abstracts and visualizes the decision flow of DPR.

6.1.1 Global Summary
After selecting DPR as the evaluation architecture and the first
checkpoint and the test dataset in the User Panel, E1 observed the
distribution of the dataset, the performance metrics of the subsets,
and the responses of multiple modules in the Summary View (T4).

2. https://github.com/facebookresearch/DPR

https://github.com/facebookresearch/DPR


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Evaluation metrics. As shown in Fig. 1B, the performance
scores corresponding to each subset classified by the opening two
words are unequal, especially the top-k accuracy used to measure
the performance of the Retriever. The overall evaluation metric for
the whole model, i.e., EM, differs among subsets. When the top-k
accuracy is way below average, the model fails to give correct
predictions without obtaining passages containing gold answers,
such as the subset classified by “How-”. Hence, E1 claimed that
future model design should consider different question types.

Module response. E1 then clicked the button to observe the
layer aggregation results for four (M,T )s as shown in Fig. 7.
Each (M,T ) had specific layers in it that play the main role to
complete the task, especially (Q,E) and (P,E) in the Retriever
that had a large number of layers with a relatively small effect,
indicating the potential for optimizing the model representation
space in terms of training methods, dataset selection and model
compression. In addition, since (R,R) and (R,S) shared the same
module, comparing Fig. 7C with Fig. 7D revealed that the Reader
functioned as a Re-ranker in the low layers while focusing on
extracting answers in the middle and high layers.

Potential relation. Meanwhile, E1 found inconsistent layer
responses corresponding to different subsets. That is, the color
shades of different rectangles on the same row were inconsistent,
presumably due to question types, which further explored in
Sec. 6.2.

6.1.2 Instance exploration
After E1 randomly selected multiple instances and observed the
data flow changes in the corresponding top 10 candidate passages in
the three tasks in the Instance View, some preliminary conclusions
about multiple modules were drawn (T2).

Retriever and Re-ranker. A remarkable feature was that the
first column indicating the Retriever was full of words with blue
and pink backgrounds corresponding to sentence 0 (question) and
sentence 1 (title), respectively. Therefore, E1 believed that most
of the words in question had a significant impact on the results
of (Q,E) and that the embedding output of (P,E) was heavily
dependent on the title. Meanwhile, by viewing the words presented
in the grouped bar chart above the column, E1 found that the
Retriever relied on overlapped and relevant words. In the example
shown in Fig. 1C, the words “dragon” and “super” appeared
multiple times in the question and the selected title, whereas other
(secondary) words, such as “episode” and “113”, were ignored,
which might be the reason for the failure of the Retrieval that all
lines connecting the rows were in red. However, the Re-ranker
seemed to focus on the overall structure and semantics when
reordering, with a high frequency of separate-sentence words such
as “[SEP]” and periods, as well as words outside the main entities
(e.g., “episode” shown on the first row of the second column in
Fig. 1C). E1 argued that this confirmed the conclusion drawn by
previous work [94] that interaction-based Retriever can capture
more semantic information than representation-based Retriever
such as DPR.

Re-ranker and Reader. As E1 looked at the second and third
columns representing the Re-ranker and the Reader respectively,
she declared that the Re-ranker had begun to capture information
about answers because some of the important words concluded
from it were similar to those from the Reader and relevant to the
final answer. Compared with the Retriever or the Re-ranker, she
further found that the Reader usually paid much attention to the
first word, which specified the type of question and other words

that were important for answering the question, such as “when” and
“130” presented in the grouped bar chart above the third column in
Fig. 1C, rather than named entities and delimiters.

6.1.3 Candidate Exploration
Next, E1 tried to compare attribution trees at different scales
by adjusting the respective thresholds in the Tree View, verified
the findings mentioned above because layer attribution generally
yielded similar results as feature attribution did, and proposed new
ideas (T1, T2).

Verification of previous conclusions. First, as shown in
Fig. 1D, E1 found that the semantic connections in (Q,E) were
close and that (P,E) depended on the title as well as the “[SEP]”,
which was consistent with the findings in the Instance View. Second,
she found that the edges in the tree for (R,R) originated from the
lower and middle layers, which also appeared in the tree for (R,S).
By contrast, the latter was different because it included edges
related to the answers originating from the higher layers, which
was consistent with the conclusion for the Summary View.

Questions about attribution trees. In the process of explo-
ration, E1 found that the results of the attribution of features
from the whole were roughly similar to those of layer attribution
together with differences. For example, the words filtered out in the
Instance View did not appear in the attribution tree. Additionally,
the results of hidden embedding attribution were different from
those of attention attribution because the node with the largest
diameter sometimes did not appear at the top. This result is related
to the nature of the attribution and tree generation algorithm, which
will be examined in detail in the Discussion section (Sec. 8).

6.1.4 Summary
After the initial exploration of each view, E1 used VEQA

to successfully abstract the decision flow of DPR: the Retriever
relied on overlapped words for coarse-grained exploration, and
the Re-ranker corrected the ranking results based on the overall
structure and prediction results mainly at the low layers. On such
basis, the Reader deepened the connection between the prediction
and the question at the high layers and extracted the exact answer.
Accordingly, E1 gave potential model enhancement solutions, such
as using the Interaction-based Retriever to enhance the retrieval
capability together with model compression to improve efficiency,
considering questions types when designing models, and adopting
better training methods.
6.2 Part II: Categorizing a successful case of decisions

On the basis of the insight obtained by E1 in Part I, E4 began
a deeper study of individual instances with the general workflow
described in Sec. 5.1 to confirm whether the decisions are reliable.

How does the Summary View guide the selection of instances?
As mentioned in Sec. 6.1.1, E4 found a potential relation between
module response and performance for the different subsets in the
Summary View. Specifically, by looking at the grouped barcharts in
the Summary View, E4 found that “who played” and “who plays”
were the two groups with relatively poor top-k accuracy but good
EM, and the corresponding response of the fourth layer of the
Re-ranker was much higher than that of the others (Fig. 8A). E4
speculated that the Re-ranker did a good job of sorting this type of
questions, so that the candidate with a gold answer was reordered
to the top. Therefore, E4 clicked the link in the Sankey diagram
and jumped to the instance table in the Context View to select
instances in this subset to verify his hypothesis. (T4)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 8. An example of categorizing a successful case of a decision by general user workflow. E4 selected an instance in the Context View (B1) based
on the insights about the special response of the Re-ranker and performance of the “what-play” subset in the Summary View (A). Candidate 2 and
Candidate 3 in retrieval results were noticed by E4 for their ranking variations and special distribution of important words in the Instance View (C)
such as “grey”, “critics”, “film” and “#rma”, followed by further exploration in the Tree View (D1, D2, D3), with the aid of the Context View (B2, B3).

Does the Retriever in DPR only rely on keyword matching?
E4 clicked on the row where “who played in the first fifty shades of
grey” was located because the top-k accuracy of this instance was
only 0.1, but model still predicted the correct answer (Fig. 8B1). In
the Instance View (Fig. 8C), E4 found that one candidate containing
the gold answer moved from the third to the first place after re-
ranking and the candidate in the second place after retrieval dropped
to seventh. Then, E4 looked at the barchart above the first column
and found that “grey” was considered an important indicator by
(Q,E) and was a part of the title of candidate 2, so E4 suspected
that candidate 2 was ranked high because of “grey”. Furthermore,
E4 dived into the Context View to check and found that it was
an irrelevant passage (Fig. 8B2). However, although the title of
candidate 3 was “fifty shades of grey (film)”, which overlapped
greatly with the question, the highest scoring word was “film”,
except for [SEP] (Fig. 8B3). E4 argued that Retriever noticed the
“played” in the given question, that is, that the target of the passages
to be searched for was a movie rather than a novel, which illustrated
the superiority of dense Retriever over traditional methods that rely
on keyword matching (T3).

What happens in the fourth layer of the Re-ranker? E4
wanted to understand how Re-ranker found the difference between
two candidates and modified their order, and whether it was related
to the strong response of the fourth layer of Re-ranker presented
in the Summary View. Looking at the Re-ranker tree for candidate
2 in the Tree View (Fig. 8D1), he found that the most obvious
change in the fourth layer was the addition of all the “grey”s in
the passage and the “critics” for the identity into the tree structure.
Consistently, the two words above appeared in the second column
in the Instance View. E4 believed that Re-ranker confirmed here
that candidate 2 was irrelevant. Meanwhile, the most significant
change in the fourth layer of the Re-ranker tree for candidate 3 was
the addition of another small part of the answer “#rma” and the
“film” in the title into the tree structure (Fig. 8D2). E4 believed that
Re-ranker had already determined the possible answers here and
used this as a basis for re-ranking. Additionally, after comparing it
with the Reader tree at the layer level (Fig. 8D3), E4 found that

Fig. 9. An overview of performances (A) and attributions of the Question
Encoder (B) and the Passage Encoder (C) in the new Retriever.

the structures and changes of the two trees for candidate 3 were
similar, i.e., Reader correlates the possible answers and questions
at high layers to determine the prediction (T1, T3).

6.3 Part III: Exploring retrieval performance boost given
by the new training scheme

E6 noted that by improving the training scheme, the retrieval
performance of the second checkpoint, called DPR(adv hn), was
greatly improved. Specifically, the top-20 accuracy on the NQ test
set increased from 0.801 to 0.813. Therefore, E6 was interested in
using VEQA to explore the reasons for the improvement and then
imported DPR(adv hn) into VEQA for a comparison.

In the Summary View (Fig. 9), E6 noticed that compared with
the original checkpoint (Fig. 1B), the retrieval performance of each
subset became more balanced and close to the overall average. A
comparison with Fig. 7A and Fig. 7B showed that attribution scores
of Question Encoder and Passage Encoder in the middle and high
layers generally increased, whereas the attribution of the low layers
weakened. E6 believed that the quality of the negative samples
originally constructed for training was not good enough and DPR
could only complete relatively easy tasks; the improvement in the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Fig. 10. Comparison of keyword positions. A) An example in which
DPR(adv hn) successfully extracts relevant paragraphs but DPR fails;
The left shows the keywords concerned by DPR(adv hn), and the right
shows the keywords concerned by DPR (saliency above 0.03). B) The
proportion of title words in keywords whose saliency values are higher
than certain thresholds.

training method made each category of problems reach the upper
limit of this architecture in the experimental sense by activating
numerous high layers (T4).

Furthermore, E6 selected 10 instances in the Context View. Here
DPR(adv hn) was able to retrieve relevant paragraphs of them,
but DPR performed much worse. E6 examined these instances
in the Instance View to determine why DPR(adv hn) succeed. A
surprising finding was that the position diversity of the keywords
that DPR(adv hn) focused on was considerably improved, as
illustrated by one instance shown in Fig. 10A. That is, DPR(adv hn)
paid much attention to the global information and no longer
completely relied on the matching words in the title for retrieval. To
test this hypothesis, we counted the positions of keywords captured
by Passage Encoder, whose saliency was higher than the threshold.
As indicated by the quantitative results in Fig. 10B, the new
checkpoint reduced the focus on the title words. In particular, about
half of the most concerned keywords (saliency above 0.05) were
words in the body of the passages. E6 believed that this is a good
confirmation of the classical shortcut, which is also a consensus of
existing research: current models rely on titles for retrieval because
the source of the training set is Wikipedia and titles are a good
summary of passages. DPR aims to strengthen the model’s attention
to global information through contrastive learning by constructing
negative samples [24], [64]. However, using random passages or
positive samples of other questions as negative samples is not good
enough. Given their low correlation with questions, the model easily
judges directly by titles. The negative samples used by the new
model contain many noise samples with high similarity, forcing
the model to pay more attention to the global information than to
the title. Notably, this empirical consensus has not been supported
by corresponding interpretable data before, and we are the first
to observe it from a visual perspective and confirm it statistically.
E6 further mentioned that improved ways of constructing negative
samples or limiting the attention to titles during model training can
be established to increase model performance.

7 EXPERT FEEDBACK

After the exploration, we conducted one-on-one interviews with
each expert for 30-40 minutes and collected feedback from the
aforementioned six experts (E1-E6), who were generally positive
about the usability of VEQA and provided insightful suggestions.

7.1 Usability

Effectiveness. The entire workflow of VEQA was considered
reasonable by all the six experts since the straightforward and level-
progressive exploration is consistent with their understanding. They
found interesting insights and confirmed the previous consensus
as results (Sec. 6). Our explanation engine specifically gained
their appreciation. E6 stated that, “Raw attention is often messy.
Attribution visualization helps to visualize the important parts of
words and model and increases my confidence in the system’s
interpretation.” As for the visual interface, all the experts claimed
that the visualizations met the requirements and helped them
understand the decision process of OpenQA models. The Summary
View received unanimous praise because it provides an overall
analysis of the dataset in terms of different question types and gives
global statistical information. The Instance View and the Tree View
were found to be useful by E1 and E4, especially their ability to set
thresholds to filter information. E1 indicated that, “I can flexibly
interact with the system to decide which information to analyze, and
set the thresholds to control the amount of information to show”.
In addition, the experts believed that the Tree View provides a new
perspective of the attention map and an intuitive understanding
of the decision process for the instance of interest. Moreover, all
experts confirmed the necessity of the two colormaps used in the
Tree View. Considering the colormaps and learning curve, E3 said,

“I first focus on the structural changes of the tree, and I understand
the view relatively easily. The slight complexity brought by the
two colormaps doesn’t significantly affect my understanding or the
learning curve because there is no reason to think that the color of
the nodes encodes the same information as the color of the edges.”
Suggested improvements. Although all experts stated that all the
views in VEQA were necessary and provided sufficient information,
they reported that VEQA is relatively complex because it consists
of multi-level information and also provides an explanation of
various modules. They spent 20-50 minutes on average to become
familiar with the system, which could be partially improved by
adding other indicator words for each sub-figure in each view or
even direct text prompts for simple and quantifiable conclusions to
help reduce the burden of understanding the various encodings and
mappings. Moreover, when E6 performed the model comparison
described in Sec. 6.3, he stopped at the instance level because
continuing to explore the Tree View requires repeatedly switching
models and clicking instances. Therefore, a comparison module to
compare different models over the same instance is a viable future
capability.

7.2 Inspiration for Future Work

Experts’ preference for all-level statistical analysis. VEQA pro-
vides visual explanations from the subset, instance, and candidate
levels. The views corresponding to the first two levels provide rich
statistical analysis and the candidate-level Tree View focuses on
intuitive insights into the generation trees’ evolution. During the
interviews, E6 raised further expectations from the design of our
detailed view and said, “the Tree View already serves the intended
purpose well enough as a detailed view of a single candidate, but
further statistical analysis could also be performed at the candidate
level to obtain more detailed conclusions about the overall behavior
of the model.” To this end, further graph-based statistical analysis
of the structure of generated trees is promising future work. This
expert’s expectation leads to the discussion of quantitative analysis
versus visual insight in Sec. 9.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Experts’ desire for integrated plug-ins. During the interviews,
all experts were impressed by the effectiveness of our system, and
three of them were interested in the future development of VEQA.
E4 said, “My brief exploration of the system convinced me of its
validity. If it could be integrated into my development environment
as a library for easy invocation, I would use it to perform idea
evaluation when starting a new project. When finished, it will offer
great help for case studies, intuitive analysis, and improving the
quality of my articles.” We have carefully considered this proposal
and discussed the possible difficulties and approaches in Sec. 9.

8 DISCUSSION

Here, we discuss VEQA’s necessity and novelty, generalizability,
scalability, reliability, learning curve and forgetting curve.
Necessity and Novelty. Although OpenQA is a crucial task, the
decision-making process of the corresponding model is unclear,
which hinders further improvement and understandability. Long
texts, multi-modules, and the gap from parameters to semantics
are critical challenges in interpreting complex models. After
the careful review of general XAI systems, Transformer-specific
interpretability methods, and visual analytic systems in Sec. 2,
we argue that existing systems and technologies cannot support
the in-depth exploration of multi-module models for OpenQA in
the context of massive, long texts. Motivated by these conditions,
VEQA innovates in the exploration of the decision flow of multi-
module OpenQA models and integration of interpretability methods
for Transformers and QA, and it offers a new visual design for
tighter integration with algorithms, resulting in highly effective
data presentation and feature understanding, which are necessary
according to the latest surveys [4]. We create a new visual
representation to deal with the large-scale data of the model
through tree visualizations and flow diagrams, and address the
visual confusion and scalability problems caused by attention
matrices of long contexts and multiple candidate passages. In
addition, on the basis of two novel visualization designs and our
explanation engine, we extract keywords and key interactions
between words by integrating users’ factors into the generation tree
algorithms and the interface, thus bridging the gap from saliency
and attribution to semantic understanding of the decision-making
processes. In summary, our work focuses on combining well-
established interpretability algorithms in the ML community with
visual analytics to exploit the potential of algorithms in complex
multi-module models for OpenQA. It may provide a reference for
other similar visual analysis work on explaining complex models.
Generalizability. We have demonstrated the effectiveness of
VEQA through case studies on DPR by using the NQ dataset,
which is also applicable to other homogeneous datasets. To clarify
the generalization, we briefly illustrate the relationship between
OpenQA and general QA tasks as well as models. From the
perspective of tasks, OpenQA is the most general QA task and the
ultimate form of a search engine because it has no restrictions on
the field of the problem [8]. By contrast, closed domain means
that the source of the question is restricted to a certain domain,
or the evidence for the answer is a given text or knowledge. In
accordance with the source of information, OpenQA can be divided
into three types, namely, text-based, knowledge-based, and hybrid.
As described in Sec. 3.1.2, for the extractive text-based OpenQA
task considered here, the second step, i.e., answer extraction,
overlaps with other relatively simple generalized QA tasks, such as
MRC. With regard to models, BERT is the current state-of-the-art

model, and it is widely used in various components such as the
Retriever/Reader of text-based QA as discussed in Sec. 2.2. In
addition, some QA models incorporate generative modules [51],
such as BART [42], while they are still Transformer-related. For
knowledge-based QA, graphical neural networks and other models
have a pivotal impact [74], [90]. Therefore, we argue that VEQA
could be generalized to Transformer-based models for sub-tasks of
OpenQA. With MRC as an example, we just need to remove the
Instance View because the source of evidence for the MRC task
is the given context, and the Instance View is no longer needed.
Additionally, although VEQA is designed and evaluated for a
two-stage pipeline model, it can be effortlessly applied to other
Transformer-based end-to-end, Retriever-free, or other attention-
related generative models, because the attribution algorithms,
generation trees, and corresponding visual design are available
for the attention mechanism and its variants. We also note that
few OpenQA models combined with reinforcement learning [84]
or graphical neural networks [73] are able to directly abstract the
interactions between words through layer attribution methods to
construct attribution trees for models. Similarly, our systems cannot
be generalized to knowledge-based QA models because they are not
composed of Transformer-based modules. Other network-specific
interpretable methods need to be investigated.
Scalability. Our approach has some scalability issues in terms
of both the algorithm and the visual design. The bottleneck of
computational cost in our system comes from the large number of
long-input and attribution methods, especially for layer attribution
for each module of the serial model. For 3610 instances, the
system takes about 20 hours to generate attribution data on the
top-20 candidate passages that are 100 words long through the
entire architecture with the layer conductance method with default
parameters on 4 GPUs. However, considering the several days
consumed by the Retriever in generating representations of a
large corpus and retrieval with the given question, the run-time
overhead caused by the attribution method is acceptable. For this
reason, our system cannot and does not need to include arbitrarily
modified questions, pruning attention heads, and other free forms of
interaction as VisQA does. As for the visual design, the structures
of the attribution trees in the Tree View will be illegible, with
nodes and edges overlapping, if the attribution threshold is small.
A possible method to mitigate this is to use small multiples to
represent structures at the expense of size information. Similarly, if
the saliency threshold is reduced, the column width in the Instance
View will increase with the number of words presented in each
column because a fixed scale is used, and information will not
be fully displayed due to the limitation in screen real estate, but
this can be solved by scrolling. However, we believe that the user
burden and visual clutter caused by the change in the threshold
do not need to be considered because the purpose of the Instance
View and Tree View is to abstract important information. Users
are informed of the overall distribution by observing changes in
the tree structure and word count as the threshold is reduced, and
capture key information with the use of a relatively large threshold,
which has been confirmed by the experts.
Reliability. VEQA has been proven to provide a comprehensive
multi-level exploration of OpenQA models. However, we only
provide an abstraction of the attribution score distribution, i.e., a
dependency tree at the layer-level, without presenting the original
data in certain way. Doing so may be necessary because the
attribution tree is constructed by a greedy algorithm with top-
down heuristics, and some important information may be lost in the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

process. For example, suppose that two words are closely related
(high attribution scores) within multiple layers. In this case, the
algorithm no longer considers their connection at the lower layer
because they have been added to the tree at the higher layer, even if
their attribution score at the lower layer is much higher. In addition,
we follow previous work and construct the attribution tree by
using only attention attribution for caution because the relationship
between attention attribution and embedding attribution is still not
fully investigated. As mentioned in Sec. 6.1.3, the two attribution
algorithms are not directly related. In future work, exploring the
relation between embedding and attention attribution, and merging
them into an attribution tree could be challenging. In addition to
the fact that algorithms may lead to information omission, we
are temporarily unable to quantitatively prove the reliability of
the model improvement solutions drawn from the case study. The
training of DPR requires massive resources, and it is trained using
dozens of high-performance GPUs on tens of millions of data.
Although we were unable to conduct complete experiments due to
resource constraints, the qualitative and quantitative confirmation
of the empirical conclusions from the visualization perspective
through case studies are highly encouraging.
Learning curve and forgetting curve. As mentioned in Sec. 7, the
experts considered VEQA a relatively complex system; they took
20-50 minutes to master the system workflow and explore it freely.
The two experts (E2 and E3) who were unfamiliar with OpenQA
and attribution algorithms found it difficult to master the system.
However, they claimed that the rewards of exploring our system
were worth the time and showed great interest in using our system
for deep exploration of various models in the future. The experts
also mentioned that the one-on-one demonstrations greatly reduced
the difficulty of mastering the system. A high-quality Readme
document is likely to be helpful here. In addition, we examined the
experts’ forgetting curves at the frequency of weekly interviews.
E2 and E3 were confused about the tree view after two weeks
because it was not a form of visualization that they were familiar
with. The remaining experts were still able to recall the workflow
after four weeks.

9 IMPLICATIONS

We distill several implications from our work, especially from the
processes of developing the requirements with experts at the early
stages and eliciting feedback from them at the later stages.

How to derive requirements from AI experts. We encountered
difficulties in distilling the experts’ requirements. The experts’
opinions and our expectations showed mismatch, and the experts’
opinions were initially vague. Initially, we considered showing
the full model flow and presenting the schema of VisQA [30] to
the experts, but E1 rejected this design because she did not want
to explore individual passages by examining attention heads and
would rather explore options with high prediction scores (T3). E1’s
opinion guided our identification of the requirement to focus on
the information flow of question-passage pairs in one instance
(R3) and motivated the design of the Context View. In addition,
E1 initially formulated her requirement as “understanding how
the basic capabilities of the model, such as counting, selection,
and filtering, are related to the parameters.” The expectation was
directional but not specific; thus, we developed it further. Through
literature review and discussion, we refined the fuzzy phrase “basic
capabilities” into specific task types distinguished by the first few
words of questions, and the fuzzy term “parameters” into specific

layer responses of the model (T4). During the collaboration with
E1, we summarized actionable steps as follows: (1) understand
and adopt experts’ domain “language”, (2) inform experts about
visualization features, (3) discuss the prototype, and if possible, (4)
integrate it into their environment.

How to address the balance between the quantitative analy-
sis and visual insights provided by the XAI system. Quantitative
analysis of model results alone is not descriptive enough, and users
may be easily confused about how to interpret them. Meanwhile, if
only visual insight is available and quantitative analysis is lacking,
users will not feel confident with the conclusions derived from
the system, as evidenced by E6’s comment in Sec. 7.2, where he
expressed an interest in seeing further statistical metrics in relation
to the Tree View. To this end, we need to support experts’ desire
for an all-level quantitative analysis and provide comprehensive
visual insights.

How to plug visual analysis tool into experts’ development
environment. ULCA [21] and PipelineProfiler [57] targeting
simple models and datasets are integrated with Jupyter Notebook,
and a few other works focusing on deep models, such as ex-
plAIner [71], are TensorBoard [1] plug-ins. The target users of
our work are experts developing QA models, who generally use
Python and are familiar with TensorBoard. Therefore, developing
our explanation engine and views as reusable TensorBoard plug-
ins is a viable pathway. However, this is not a straightforward
task because plug-ins should be able to adapt to various data
and models. The relative generalization of plug-ins places high
expectations on the generalization of components. Moreover, the
various possible configurations of workflows in QA and NLP need
to be systematically surveyed. Similarly, NLP experts do not have
a deep understanding of the configuration and expected effects
of visual analysis tools. Therefore, in-depth communication and
cooperation between the two fields must be promoted to distill
requirements effectively and develop general tools.

10 CONCLUSION

We propose VEQA, a visual analytic system that helps experts to
understand the decision flow of OpenQA models and provides
insights into model enhancements. VEQA offers multi-level
interpretable analysis for various modules and subsets from subset,
instance, and candidate levels via various attribution algorithms.
Through case studies and expert evaluation, we confirm that VEQA
can abstract and visualize the decision flow of OpenQA models,
help experts classify successful examples of decisions, and provide
suggestions for model enhancement.

In our future work, we plan to add a model comparison
module for analyzing a broad range of OpenQA models with
a wide selection of datasets and disassemble the various views
of VEQA into component libraries that can be embedded in the
Python environment. We also plan to generate significantly reliable
attribution trees and perform further statistical analysis through
collaboration with domain experts.

ACKNOWLEDGMENTS

The authors want to thank Yi Shan, Jingdong Zhang, Zhaoyu Zhou
and reviewers for their suggestions. This work is supported by Na-
tional Natural Science Foundation of China (NSFC No.62202105),
Shanghai Municipal Science and Technology Major Project (No.
2018SHZDZX01, 2021SHZDZX0103), General Program (No.
21ZR1403300), Sailing Program (No.21YF1402900) and ZJLab.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] S. Abnar and W. Zuidema. Quantifying attention flow in transformers. In
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4190–4197, Online, July 2020. Association for
Computational Linguistics.

[3] A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Parikh, and
D. Batra. Vqa: Visual question answering. International Journal of
Computer Vision, 123:4–31, 2015.

[4] G. Alicioglu and B. Sun. A survey of visual analytics for explainable
artificial intelligence methods. Computers & Graphics, 102:502–520,
2022.

[5] A. Asai, K. Hashimoto, H. Hajishirzi, R. Socher, and C. Xiong. Learning
to retrieve reasoning paths over wikipedia graph for question answering.
ArXiv, abs/1911.10470, 2020.

[6] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek. On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PLoS ONE, 10, 2015.

[7] Blakrlj, N. Erzen, S. Sheehan, S. Luz, M. Robnik-Sikonja, and S. Pollak.
Attviz: Online exploration of self-attention for transparent neural language
modeling. ArXiv, abs/2005.05716, 2020.

[8] M. Caballero. A brief survey of question answering systems. International
Journal of Artificial Intelligence & Applications (IJAIA), 12(5), 2021.

[9] F. Cheng, D. Liu, F. Du, Y. Lin, A. Zytek, H. Li, H. Qu, and K. Veera-
machaneni. Vbridge: Connecting the dots between features and data
to explain healthcare models. IEEE Transactions on Visualization and
Computer Graphics, 28:378–388, 2022.

[10] F. Cheng, Y. Ming, and H. Qu. Dece: Decision explorer with counterfactual
explanations for machine learning models. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1438–1447, 2020.

[11] J. Choo and S. Liu. Visual analytics for explainable deep learning. IEEE
computer graphics and applications, 38(4):84–92, 2018.

[12] J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural
networks. arXiv preprint arXiv:1609.01704, 2016.

[13] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does bert
look at? an analysis of bert’s attention. In BlackboxNLP@ACL, 2019.

[14] C. M. Collins, F. B. Viégas, and M. Wattenberg. Parallel tag clouds to
explore and analyze faceted text corpora. 2009 IEEE Symposium on Visual
Analytics Science and Technology, pages 91–98, 2009.

[15] M. Denil, A. Demiraj, and N. de Freitas. Extraction of salient sentences
from labelled documents. ArXiv, abs/1412.6815, 2014.

[16] J. F. DeRose, J. Wang, and M. Berger. Attention flows: Analyzing and
comparing attention mechanisms in language models. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1160–1170, 2021.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[18] K. Dhamdhere, M. Sundararajan, and Q. Yan. How important is a neuron?
ArXiv, abs/1805.12233, 2019.

[19] A. Drozdov, P. Verga, M. Yadav, M. Iyyer, and A. McCallum. Unsu-
pervised latent tree induction with deep inside-outside recursive auto-
encoders. ArXiv, abs/1904.02142, 2019.

[20] J. Falconer. Google: Our new search strategy is to
compute answers, not links. https://thenextweb.com/news/
google-our-new-search-strategy-is-to-compute-answers-not-links,
June 2011.

[21] T. Fujiwara, X. Wei, J. Zhao, and K.-L. Ma. Interactive dimensionality
reduction for comparative analysis. IEEE Transactions on Visualization
and Computer Graphics, 28(1):758–768, 2021.

[22] T. Fujiwara, J. Zhao, F. Chen, Y. Yu, and K.-L. Ma. Network comparison
with interpretable contrastive network representation learning. Journal of
Data Science, Statistics, and Visualisation, 2(5), 2022.

[23] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. Lineup: Visual
analysis of multi-attribute rankings. IEEE Transactions on Visualization
and Computer Graphics, 19:2277–2286, 2013.

[24] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings
of the thirteenth international conference on artificial intelligence and
statistics, pages 297–304. JMLR Workshop and Conference Proceedings,
2010.

[25] Y. Hao, L. Dong, F. Wei, and K. Xu. Self-attention attribution:
Interpreting information interactions inside transformer. arXiv preprint
arXiv:2004.11207, 2020.

[26] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on
visualization and computer graphics, 6(1):24–43, 2000.

[27] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:498–520, 1933.

[28] Y. Hou, C. Wang, J. Wang, X. Xue, X. L. Zhang, J. Zhu, D. Wang, and
S. Chen. Visual evaluation for autonomous driving. IEEE Transactions
on Visualization and Computer Graphics, 28(1):1030–1039, 2021.

[29] S. Jain and B. C. Wallace. Attention is not explanation. In NAACL, 2019.
[30] T. Jaunet, C. Kervadec, R. Vuillemot, G. Antipov, M. Baccouche, and

C. Wolf. Visqa: X-raying vision and language reasoning in transformers.
IEEE Transactions on Visualization and Computer Graphics, 28:976–986,
2022.

[31] M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg. Gan
lab: Understanding complex deep generative models using interactive
visual experimentation. IEEE transactions on visualization and computer
graphics, 25(1):310–320, 2018.

[32] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and
W.-t. Yih. Dense passage retrieval for open-domain question answering.
In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781, Online, Nov. 2020.
Association for Computational Linguistics.

[33] O. Khattab, C. Potts, and M. A. Zaharia. Relevance-guided supervision for
openqa with colbert. Transactions of the Association for Computational
Linguistics, 9:929–944, 2021.

[34] N. Kitaev, S. Cao, and D. Klein. Multilingual constituency parsing with
self-attention and pre-training. In ACL, 2019.

[35] G. Kobayashi, T. Kuribayashi, S. Yokoi, and K. Inui. Attention is not only
a weight: Analyzing transformers with vector norms. In EMNLP, 2020.

[36] O. Kovaleva, A. Romanov, A. Rogers, and A. Rumshisky. Revealing the
dark secrets of bert. ArXiv, abs/1908.08593, 2019.

[37] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. P. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova,
L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. V. Le,
and S. Petrov. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics,
7:453–466, 2019.

[38] V. Lal, A. Ma, E. Aflalo, P. Howard, A. Simoes, D. Korat, O. Pereg,
G. Singer, and M. Wasserblat. InterpreT: An interactive visualization tool
for interpreting transformers. In Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics:
System Demonstrations, pages 135–142, Online, Apr. 2021. Association
for Computational Linguistics.

[39] G. Lee, S. Kim, and S. won Hwang. Qadiver: Interactive framework for
diagnosing qa models. In AAAI, 2019.

[40] J. Lee, A. Wettig, and D. Chen. Phrase retrieval learns passage retrieval,
too. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3661–3672, Online and Punta
Cana, Dominican Republic, Nov. 2021. Association for Computational
Linguistics.

[41] K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly
supervised open domain question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages
6086–6096, Florence, Italy, July 2019. Association for Computational
Linguistics.

[42] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461, 2019.

[43] J. Li, X. Chen, E. H. Hovy, and D. Jurafsky. Visualizing and understanding
neural models in nlp. In HLT-NAACL, 2016.

[44] R. Li, W. Xiao, L. Wang, H. Jang, and G. Carenini. T3-vis: visual
analytic for training and fine-tuning transformers in NLP. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 220–230, Online and Punta
Cana, Dominican Republic, Nov. 2021. Association for Computational
Linguistics.

[45] Z. Li, X. Wang, W. Yang, J. Wu, Z. Zhang, Z. Liu, M. Sun, H. Zhang, and
S. Liu. A unified understanding of deep nlp models for text classification.
IEEE Transactions on Visualization and Computer Graphics, 2022.

[46] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training
processes of deep generative models. IEEE transactions on visualization
and computer graphics, 24(1):77–87, 2017.

https://thenextweb.com/news/google-our-new-search-strategy-is-to-compute-answers-not-links
https://thenextweb.com/news/google-our-new-search-strategy-is-to-compute-answers-not-links


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[47] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017.

[48] S. Liu, T. Li, Z. Li, V. Srikumar, V. Pascucci, and P.-T. Bremer. Visual
interrogation of attention-based models for natural language inference and
machine comprehension. In EMNLP, 2018.

[49] Y. Liu, K. Hashimoto, Y. Zhou, S. Yavuz, C. Xiong, and P. S. Yu. Dense
hierarchical retrieval for open-domain question answering. In EMNLP,
2021.

[50] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30, 2017.

[51] Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han, and W. Chen. Generation-
augmented retrieval for open-domain question answering. arXiv preprint
arXiv:2009.08553, 2020.

[52] L. McInnes and J. Healy. Umap: Uniform manifold approximation and
projection for dimension reduction. ArXiv, abs/1802.03426, 2018.

[53] T. Mikolov, M. Karafiát, L. Burget, J. H. Cernocký, and S. Khudanpur.
Recurrent neural network based language model. In INTERSPEECH,
2010.

[54] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu.
Understanding hidden memories of recurrent neural networks. In 2017
IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 13–24, 2017.

[55] Y. Ming, H. Qu, and E. Bertini. Rulematrix: Visualizing and understanding
classifiers with rules. IEEE transactions on visualization and computer
graphics, 25(1):342–352, 2018.

[56] Y. Nie, S. Wang, and M. Bansal. Revealing the importance of semantic
retrieval for machine reading at scale. In EMNLP, 2019.

[57] J. P. Ono, S. Castelo, R. Lopez, E. Bertini, J. Freire, and C. Silva.
Pipelineprofiler: A visual analytics tool for the exploration of automl
pipelines. IEEE Transactions on Visualization and Computer Graphics,
27(2):390–400, 2020.

[58] OpenAI. Chatgpt: Optimizing language models for dialogue. https:
//openai.com/blog/chatgpt/, November 2022.

[59] D. Pascual, G. Brunner, and R. Wattenhofer. Telling bert’s full story: from
local attention to global aggregation. ArXiv, abs/2004.05916, 2021.

[60] Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, X. Zhao, D. Dong, H. Wu, and
H. Wang. Rocketqa: An optimized training approach to dense passage
retrieval for open-domain question answering. In NAACL, 2021.

[61] S. Ramnath, P. Nema, D. Sahni, and M. M. Khapra. Towards in-
terpreting bert for reading comprehension based qa. arXiv preprint
arXiv:2010.08983, 2020.

[62] R. Ren, S. Lv, Y. Qu, J. Liu, W. X. Zhao, Q. She, H. Wu, H. Wang,
and J.-R. Wen. PAIR: Leveraging passage-centric similarity relation for
improving dense passage retrieval. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pages 2173–2183, Online,
Aug. 2021. Association for Computational Linguistics.

[63] R. Ren, Y. Qu, J. Liu, W. X. Zhao, Q. She, H. Wu, H. Wang, and J.-R.
Wen. RocketQAv2: A joint training method for dense passage retrieval
and passage re-ranking. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 2825–2835,
Online and Punta Cana, Dominican Republic, Nov. 2021. Association for
Computational Linguistics.

[64] J. Robinson, C.-Y. Chuang, S. Sra, and S. Jegelka. Contrastive learning
with hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

[65] A. Rücklé and I. Gurevych. End-to-end non-factoid question answering
with an interactive visualization of neural attention weights. In ACL, 2017.

[66] D. S. Sachan, M. A. Patwary, M. Shoeybi, N. Kant, W. Ping, W. L.
Hamilton, and B. Catanzaro. End-to-end training of neural retrievers for
open-domain question answering. In ACL/IJCNLP, 2021.

[67] H.-J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit
hierarchy visualization: A survey. IEEE transactions on visualization and
computer graphics, 17(4):393–411, 2010.

[68] Y. Shen, S. Tan, A. Sordoni, and A. C. Courville. Ordered neurons:
Integrating tree structures into recurrent neural networks. ArXiv,
abs/1810.09536, 2019.

[69] A. Shrikumar, J. Su, and A. Kundaje. Computationally efficient measures
of internal neuron importance. ArXiv, abs/1807.09946, 2018.

[70] S. Silva, B. S. Santos, and J. Madeira. Using color in visualization: A
survey. Computers & Graphics, 35(2):320–333, 2011.

[71] T. Spinner, U. Schlegel, H. Schäfer, and M. El-Assady. explainer: A visual
analytics framework for interactive and explainable machine learning.
IEEE transactions on visualization and computer graphics, 26(1):1064–
1074, 2019.

[72] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. S eq 2s eq-v is: A visual debugging tool for sequence-to-sequence

models. IEEE transactions on visualization and computer graphics,
25(1):353–363, 2018.

[73] H. Sun, T. Bedrax-Weiss, and W. W. Cohen. Pullnet: Open domain
question answering with iterative retrieval on knowledge bases and text.
ArXiv, abs/1904.09537, 2019.

[74] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and
W. Cohen. Open domain question answering using early fusion of
knowledge bases and text. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4231–
4242, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational
Linguistics.

[75] K. Sun and A. Marasović. Effective attention sheds light on interpretability.
In FINDINGS, 2021.

[76] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep
networks. ArXiv, abs/1703.01365, 2017.

[77] I. Tenney, J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann,
E. Jiang, M. Pushkarna, C. Radebaugh, E. Reif, and A. Yuan. The
language interpretability tool: Extensible, interactive visualizations and
analysis for NLP models, 2020.

[78] B. van Aken, B. Winter, A. Löser, and F. A. Gers. How does bert
answer questions? a layer-wise analysis of transformer representations. In
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, CIKM ’19, page 1823–1832, New York,
NY, USA, 2019. Association for Computing Machinery.

[79] L. van der Maaten and G. E. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[80] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[81] J. Vig. A multiscale visualization of attention in the transformer
model. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 37–42,
Florence, Italy, July 2019. Association for Computational Linguistics.

[82] J. Wang, L. Gou, H.-W. Shen, and H. Yang. Dqnviz: A visual
analytics approach to understand deep q-networks. IEEE transactions on
visualization and computer graphics, 25(1):288–298, 2018.

[83] J. Wang, Y. Li, Z. Zhou, C. Wang, Y. Hou, L. Zhang, X. Xue, M. Kamp,
X. Zhang, and S. Chen. When, where and how does it fail? a spatial-
temporal visual analytics approach for interpretable object detection in
autonomous driving. IEEE Transactions on Visualization and Computer
Graphics, 2022.

[84] S. Wang, M. Yu, X. Guo, Z. Wang, T. Klinger, W. Zhang, S. Chang,
G. Tesauro, B. Zhou, and J. Jiang. R3: Reinforced ranker-reader for
open-domain question answering. In AAAI, 2018.

[85] X. Wang, J. He, Z. Jin, M. Yang, Y. Wang, and H. Qu. M2lens:
visualizing and explaining multimodal models for sentiment analysis.
IEEE Transactions on Visualization and Computer Graphics, 28(1):802–
812, 2021.

[86] Z. J. Wang, R. Turko, and D. H. Chau. Dodrio: Exploring transformer
models with interactive visualization. ArXiv, abs/2103.14625, 2021.

[87] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng,
and D. H. P. Chau. Cnn explainer: learning convolutional neural networks
with interactive visualization. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1396–1406, 2020.

[88] S. Wiegreffe and Y. Pinter. Attention is not not explanation. In EMNLP,
2019.

[89] W. Yang, Y. Xie, A. Lin, X. Li, L. Tan, K. Xiong, M. Li, and J. Lin. End-to-
end open-domain question answering with BERTserini. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages 72–77, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[90] M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question
answering. arXiv preprint arXiv:2104.06378, 2021.

[91] X. Ye, R. Nair, and G. Durrett. Connecting attributions and qa model
behavior on realistic counterfactuals. In EMNLP, 2021.

[92] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu. A survey of visual
analytics techniques for machine learning. Computational Visual Media,
7(1):3–36, 2021.

[93] D. Zhang, H. Zhang, H. Zhou, X. Bao, D. Huo, R. Chen, X. Cheng,
M. Wu, and Q. Zhang. Building interpretable interaction trees for deep
nlp models. Proceedings of the AAAI Conference on Artificial Intelligence,
35(16):14328–14337, May 2021.

[94] F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua. Retrieving
and reading: A comprehensive survey on open-domain question answering.
ArXiv, abs/2101.00774, 2021.

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

Zekai Shao is an undergraduate at School of
Information Science and Technology, Fudan Uni-
versity. His main research interests include visual
analytics and explainable machine learning.

Shuran Sun is an undergraduate at School of
Software, Fudan University. Her main research
interests include visual analytics for interpretable
machine learning.

Yuheng Zhao is currently a Ph.D student at
the School of Data Science, Fudan University.
Her main research interests include social media
visualization and text visual analytics.

Siyuan Wang received the B.S. degree in soft-
ware engineering from Fudan University, Shang-
hai, China, in 2018. She is currently working
toward the Ph.D. degree with School of Data
Science, Fudan University. Her research interests
include natural language processing, question
generation and answering, and machine reason-
ing.

Zhongyu Wei is an associate Professor in School
of Data Science at Fudan University and he
serves as the secretory in Social Media Pro-
cessing (SMP) comiittee of Chinese Information
Processing Society of China (CIPS). At Fudan,
he is the director of Data Intelligence and Social
Computing Reseach Lab (Fudan DISC), and
member of a larger NLP group directed by Prof.
Xuanjing Huang. Before joining Fudan, he was
a postdoctoral researcher in Human Language
Technology Research Institute at University of

Texas at Dallas. He got his Phd in The Chinese University of Hong
Kong in 2014. His research focuses on natural language processing,
machine learning, with special emphasis on multi-modality information
understanding and generation cross vision and language, argumentation
mining and some cross-disciplinary topics. He has published more than
60 papers on top-tier conferences in related research fields, including
ACL, EMNLP, ICML, ICLR, IJCAI, AAAI and so on.

Tao Gui is an associate professor at the Insti-
tute of Modern Languages and Linguistics of
Fudan University. He is the key member of the
FudanNLP group. He is a member of ACL, a
member of the Youth Working Committee of
the Chinese Information Processing Society of
China, and the member of the Language and
Knowledge Computing Professional Committee
of the Chinese Information Processing Society of
China. He has published more than 40 papers
in top international academic conferences and

journals such as ACL, ENNLP, AAAI, IJCAI, SIGIR, TASLP, and so on.
He has served as area chair or PCs for SIGIR, AAAI, IJCAI, TPAMI, and
ARR. He has received the Outstanding Doctoral Dissertation Award of
the Chinese Information Processing Society of China, the area chair
favorite Award of COLING 2018, the outstanding Paper Award of NLPCC
2019, and a scholar of young talent promoting projects of CAST.

Cagatay Turkay is a Professor at the Centre for
Interdisciplinary Methodologies at the University
of Warwick, UK and a Turing Fellow at the Alan
Turing Institute, London, UK. His research inves-
tigates the interactions between data, algorithms
and people, and explores the role of interactive
visualisation and other interaction mediums such
as natural language at this intersection. He fre-
quently publishes his research on visualisation
journals such as IEEE TVCG, CGF, and IEEE
CG&A, as well as journals in machine learning

and data mining, and also recently co-authored a coursebook titled
“Visual Analytics for Data Scientists’. He has been awarded the EuroVis
Young Researcher 2019 award and named a EuroGraphics Junior Fellow
in 2019.

Siming Chen is an Associate Professor at School
of Data Science, Fudan University. Prior to this,
he was a Research Scientist at Fraunhofer In-
stitute IAIS (Intelligent Analysis and Information
Systems) and a Postdoc Researcher at the Uni-
versity of Bonn in Germany. He received his
Ph.D. in computer science at the School of EECS,
Peking University and received his BS degree
in computer science at Fudan University. His
research interests are visualization and visual
analytics, with the emphasis on social media

visualization, spatial-temporal visual analytics, and cybersecurity visual
analytics. He has published 70 papers and more than 20 in top confer-
ences and journals, including IEEE VIS, IEEE TVCG, EuroVis, etc. He
served as multiple organizing chairs, committees and reviewers. He was
awarded 10+ best paper/poster awards and honorable mentioned awards
in multiple conferences, including EuroVA, ChinaVis, AGILE, IEEE VIS
Poster and won multiple IEEE VAST Challenge Excellent Awards. For
more information, please visit http://simingchen.me.

http://simingchen.me

	Introduction
	Related Work
	Visual Explanation for Machine Learning
	Transformers in OpenQA
	Interpretability Analysis Methods for Transformers
	Visual Analytics for Interpreting Transformers

	Overview
	Background
	Multi-head attention mechanism
	Model architecture

	Methodology
	Task Analysis
	Design Requirements
	Expert Verification

	Explanation engine
	Data blackPreprocessing with blackAttribution blackMethods
	Exploring blackLayer-level blackInformation blackFlow
	Interpreting blackFunctions of blackLayers

	Visual Analytics System
	Workflow
	User Interface
	Summary View
	Context View
	Instance View
	Tree View
	User Interaction


	Case Study
	Part I: Abstracting the decision process
	Global blackSummary
	Instance exploration
	Candidate blackExploration
	Summary

	Part II: Categorizing a successful case of decisions
	Part III: Exploring retrieval performance boost given by blackthe new training scheme

	Expert Feedback
	Usability
	Inspiration for blackFuture blackWork

	Discussion
	Implications
	Conclusion
	References
	Biographies
	Zekai Shao
	Shuran Sun
	Yuheng Zhao
	Siyuan Wang
	Zhongyu Wei
	Tao Gui
	Cagatay Turkay
	Siming Chen


