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When, Where and How does it fail?
A Spatial-temporal Visual Analytics Approach for
Interpretable Object Detection in Autonomous
Driving

Junhong Wang, Yun Li, Zhaoyu Zhou, Chengshun Wang, Yijie Hou, Li Zhang, Xiangyang Xue,
Michael Kamp, Xiaolong (Luke) Zhang, and Siming Chen

Abstract—Arguably the most representative application of artificial intelligence, autonomous driving systems usually rely on computer
vision techniques to detect the situations of the external environment. Object detection underpins the ability of scene understanding in
such systems. However, existing object detection algorithms often behave as a black box, so when a model fails, no information is
available on When, Where and How the failure happened. In this paper, we propose a visual analytics approach to help model developers
interpret the model failures. The system includes the micro- and macro-interpreting modules to address the interpretability problem of
object detection in autonomous driving. The micro-interpreting module extracts and visualizes the features of a convolutional neural
network (CNN) algorithm with density maps, while the macro-interpreting module provides spatial-temporal information of an autonomous
driving vehicle and its environment. With the situation awareness of the spatial, temporal and neural network information, our system
facilitates the understanding of the results of object detection algorithms, and helps the model developers better understand, tune and
develop the models. We use real-world autonomous driving data to perform case studies by involving domain experts in computer vision

and autonomous driving to evaluate our system. The results from our interviews with them show the effectiveness of our approach.

Index Terms—Autonomous driving, spatial-temporal visual analytics, interpretability

1 INTRODUCTION

Autonomous driving has grown rapidly in recent years and has
the potential to change transportation systems and even human
society significantly. An autonomous driving system uses various
artificial intelligence (Al) systems from a range of Al technologies.
While Al algorithms make autonomous driving possible, there are
still many challenges in their development.

One such challenge is that most Al algorithms are inherently
black boxes that provide little information that would explain
their decision-making process. Consequently, model development
becomes a daunting task. For example, to develop a model for
3D object detection, an essential function in most autonomous
driving systems is to understand the external environment. During
the process, developers often need to manually examine a model
for prediction errors and then to fine-tune the model. This is usually
an inefficient process, in particular, because it is difficult for model
developers to understand the exact circumstances under which a
model error occurs and what caused it.

Research efforts on explainable Al (XAI), or interpretable Al,
try to make the behaviors of Al algorithms more transparent to
humans by deriving explanations intelligible to humans [21]]. To
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help people better understand a neural-network-based model, for
instance, information related to neuron activation in the model can
be provided. Visualization has been used in XAI research: For
example, to support the microscopic interpretation of convolutional
neural networks (CNNs), Zeiler and Fergus [52] proposed a
deconvolution and unpooling method to show the feature maps of
each layer in a CNN so that the high activation value of the feature
maps in the validation set can be easily observed.

However, approaches of this type focus largely on the algo-
rithms themselves without considering the contexts including exter-
nal environment, car states and so on, in which the algorithms are
used. For example, the 3D object detection model in autonomous
driving is sensitive to the environment and the ways a car moves.
Model developers must consider both model features and the
external factors in specific scenarios.

One way to address the challenge of lacking context information
is to use visual analytics, which can integrate Al algorithms and vi-
sualization of various contextual information to support exploration-
based analysis. Recently, research by Gou et al. [20] combined
disentangled representation learning and semantic adversarial
learning to help analysts understand and improve a signal light
detection model. However, since autonomous driving happens in a
spatial-temporal environment, it is important for model developers
in autonomous driving to understand the spatial-temporal contexts
of models. To our knowledge, visual analytics research on spatial-
temporal features of Al models in autonomous driving is rare.

In this work, we design a visual analytics system to combine
spatial-temporal information and features in neural networks to
analyze 3D object detection models at two levels. This helps model
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Fig. 1. System User Interface: (a) Micro-interpreting module: feature visualization including Density Map and Object Projection; (b) Macro-interpreting
module: temporal visualization including Autonomous Driving Vehicle States and Object-level Density Maps; (c) Macro-interpreting module: spatial
visualization including Scene and Trajectory; (d) Control for selecting and filtering object classes, results and locations. (e) A legend referring to all
views introduces color encoding. (f) A guidance example to use our analysis workflow.

developers gain deeper understandings of the performances of Al
models, in particular in failure scenarios. At the micro level, our
system visualizes the predictions and ground truths of a trained
detection model based on a sequence of input images. At the
macro level, the system presents the time and space scenes of the
autonomous driving sequence. With information from these two
levels, our system can show the interaction between the spatial-
temporal scene and feature visualization, reveal the correlation
between them and the performances of the corresponding detection,
and help model developers better interpret the model results from
the three important perspectives: When, Where and How.

Our contribution can be summarized as the following:

o An Interpretable Method Integrated with Spatial-temporal
Information and CNN Features: We designed a visual analysis
method to combine macro-level spatial-temporal information
and micro-level CNN features, so that they can be explored
independently or jointly through interactive visualization tools.

o An Interpretable Visual Analytics Framework for Object
Detection in Autonomous Driving: Aiming at autonomous
driving, we provide a framework to analyze the results of
object detection algorithms visually and interactively, with rich

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

functionality and interpretability.

« A Visual Analytics System Improving the Work Efficiency of
Model Developers: We provide a system prototype to interpret
When, Where and How the model fails for model developers.
Such insight would help them augment data or adjust the network
structure to improve models more efficiently.

2 RELATED WORK

In this section, we review literature related to object detection in au-
tonomous driving, visual analytics for spatial-temporal information,
and interpretability for machine learning.

2.1

Autonomous driving has attracted more and more attention recently.
Yurtsever et al. outlined existing challenges in autonomous
driving, and comprehensively summarized recent progress in
perception, mapping, localization, planning, and human-machine
interface modules. They also introduced datasets available in the
development of autonomous driving systems, such as the PASCAL

Autonomous Driving and Object Detection
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VOC dataset [[16]], the KITTI Vision Benchmark [18]] and the
Oxford RobotCar [36]].

As a fundamental and important task in computer vision, object
detection has been widely studied and applied. CNNs have been
successfully applied in object detection tasks. Often seen techniques
can be categorized into two-stage and single-stage approaches. The
former methods, such as Fast R-CNN by Girshick [19], produce
the region proposal first, and then classify and regress the proposals
to the ground-truth bounding boxes. The second group, including
YOLO by Redmon et al. [43] and SSD by Liu et al. [35], directly
predict the object category and location without adopting proposal
learning. As an important part in the scene perception module,
object detectors have been widely used in autonomous driving.

In addition to 2D object detection models mentioned above,
3D object detection models have also been proposed for better
perception in the 3D space. Existing prevalent approaches like
VoxelNet by Zhou and Tuzel [[54] for 3D object detection largely
rely on LiDAR, which provides accurate 3D point clouds of
the scene. Although promising, LiDAR-based approaches require
expensive equipment which severely limits their scalability and
applicability. Cheaper alternatives, such as the camera-based
methods by Wang et al. [50], have been developed to directly
predict location, dimension, and orientation in 3D space alongside
the category of objects, given only RGB input images. Ding et
al. [[14] proposed a dynamic depth-guided local convolutional
network to detect 3D objects based on depth maps extracted from
monocular camera images, and promoted the development of 3D
object detection in autonomous driving.

Although these methods offer promising performances for
object detection, their high complexity and low interpretability
posechallenges for model developing. Thus, interpreting tools are
needed. In this paper, we aim to propose a spatial-temporal visual
analytics approach to address the above problem.

2.2 Spatial-temporal Visual Analytics

Peuquet el al. [42] indicated that analysis of spatial-temporal data
is often conducted from three perspectives: where, when and what,
and spatial-temporal data analysis tasks are around them according
to Andrienko et al. [[7]. To support these tasks, researchers have
developed various query techniques, such as P-Query by Chen et
al. [12]), R-Query (regions) by Jeung et al. [28|, and T-Queries
(trajectories) by Lee et al. [31]. Some visual analysis methods,
including space-time cube by Liu et al. [32], time-space slice by
Ngo et al. [40] and animation methods by Andrienko et al. [7]],
have also been explored to support in-depth analysis.

Due to the complexity of spatial-temporal data structure and
mapping, visualization of spatial-temporal data often focuses on
issues related to overlapping and neglecting multi-dimensional
and multi-records data. Researchers explored different methods to
reduce the number of multi-records. For example Guo [22] used
tools like filtering, and Kisilevich et al. [30] considered aggregation.
In addition, sampling and spatial-temporal clustering can also be
used. For the reduction of the overlapping of lines and points,
approaches like bundling by Buchin et al. [9] and multiple views
by Ferreira et al. [[17]] can help to link multiple data dimensions.
In early urban visualization systems, Butkiewicz et al. [[10] argued
that 3D views of urban models can provide an intuitive perception
of spatial information, and Chang et al. [[11]] suggested that
information visualization designs can provide information on
different dimensions of interest.
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Visual analytics has been widely used in fields such as
transportation and population flow to support the exploration
of spatial-temporal relationships of data. For example, Chen et
al. [13] built an uncertainty-aware visual analytics system for the
analysis of human behaviors from heterogeneous spatial-temporal
data, and the work by Andrienko et al. [6] is a system to reveal
patterns and trends of mass mobility through spatial and temporal
abstraction of origin-destination movement data. Sorger et al. [47]
summarized the taxonomy of integrating spatial and non-spatial
visualizations, which confirms the foundation of our approach.
Ortner et al.’s work [41]] demonstrates the effectiveness of integrated
visualization for urban planning. However, none of the existing
work has been integrated with the analysis of autonomous driving,
and we mainly expect to apply spatial-temporal visual analysis
methods to autonomous driving.

In autonomous driving, data is usually a sequence involving
driving time and location information. Some open-source tools
like Worldview [3], Autonomous Visualization System (AVS) [2]]
and Dreamview [1]] can support visualization-based exploration,
verification and presentation of spatial-temporal data involved in
autonomous driving. However, these tools are largely strong in the
presentation of relevant data, but weak in in-depth analysis. Gou et
al. [20] proposed VATLD, a visual analytics system for traffic light
detection, took a different approach and offered tools for in-depth
data and model analysis. However, because of its focus on traffic
lights, rather than diverse objects in environment, VATLD offers
limited support for the analysis of data features from different levels,
which are important to accurately understanding and diagnosing
a model involving more diverse objects. Recently, Achberger et
al. 5] proposed a visual analytics tool to help engineers analyze
test drive videos annotated with navigation-specific augmented
reality content. He et al. [24] proposed a visual analytics approach
to diagnose and improve the accuracy of semantic segmentation
on critical objects moving in various driving scenes. Jamonnak et
al. [27] proposed a geo-context aware approach based on large
spatial video data to study vision-based autonomous driving models
focusing on the final action decisions. Hou et al. [26] proposed
a visual evaluation method for the autonomous driving system.
Although these work provided new insight for autonomous driving
visual analytics, there is no work addressing the interpretability
issue of object detection for autonomous driving, with the focus
on combining the spatial-temporal information for visual analytics,
which is our research contribution.

23

Various visual analytics systems have been developed to support
the understanding and improvement of machine learning models,
especially those based on neural networks, which are often seen as
a black box. Zeiler and Fergus [52]] proposed a method to show the
feature map of a model to help users better understand the role of
each layer in a CNN and the importance of features in the original
data through visualization. This method has been widely used in
CNN interpretability research, such as in Simonyan et al. [46],
which used saliency maps.

In addition to these map-based approaches, other methods
have also been proposed. Abadi et al. [4] designed visualization
tools for data flow, the change of network parameters and the
model accuracy with TensorBoard, so that users can see the
model structure and the parameter change process in training.
Spinner et al. [48|] developed explAlner to realize understanding,

Interpretability for Machine Learning
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diagnosis, refinement, prevention tracking and reporting of models
through plug-ins in TensorBoard. Furthermore, model-specific
visual analytics systems have also been developed for model
interpretation. For deep generative models, the training process is
critical. Liu et al. [33]] developed DGMTracker to find abnormal
neurons or neural layers by observing the temporal changes of
data in the data flow. Systems like CNNVis by Liu et al. [34] and
RNNVis by Ming et al. [38]] are used to visualize and understand
CNN and RNN.

Visual analytics systems for various kinds of neural networks
can help model developers to further understand, diagnose and
optimize models. Hohman et al. [25]] summarized current visual
analytics systems for machine learning.

In autonomous driving, the interpretability of a specific model
has attracted more and more attention, with the aim of explaining,
diagnosing and optimizing it. Bojarski et al. [8]] developed Visual-
BackProp to visualize which part of the input images contributes
most to explaining the prediction results of the model and further
to help debug deep CNN-based autonomous driving models. Kim
and Canny [29] visualized attention heat maps to show where a
model may focus on. Zeng et al. [53[] applied interpretability to
the planning module of autonomous driving, and generated the
output of a single module through a neural network to improve the
interpretability of autonomous driving decisions. Mori et al. [39]]
introduced the attention branch network and used attention maps
to analyze the decision-making rationales in autonomous driving.
In addition to research on interpretability in computer vision, using
visual analytics for object detection has also been proposed. VATLD
by Gou et al. [20] combined disentangled representation learning
and semantic adversarial learning to help model developers better
understand and improve the accuracy and robustness of a model.

The complexity of machine-learning models demands tools
to improve the interpretability of object detection. One of the
bottlenecks of object detection lies in the difficulty of summarizing
under what situation models may fail. Existing research largely
focuses on an individual perspective, while a more comprehensive
analysis is required to design autonomous driving algorithms by
integrating information from different perspectives: When, Where
and How.

Drawing on research on the interpretability of autonomous
driving by computer vision researchers, we hope to develop
a method to enhance the interpretability of object detection
algorithm results by combining the high-level spatial-temporal
information of the environment, or macroscopic information, with
the features of data and model, or microscopic information. Our
research is one of the first attempts to integrate such macroscopic
and microscopic information to improve the interpretability of
algorithms in autonomous driving.

3 OVERVIEW OF OUR METHOD

Following the approach of Sedlmair et al. [44], we designed
our system following three stages: design requirement analysis
for model development, system design and implementation, and
system validation. For the first stage of design requirement analysis,
we performed empirical studies involving domain experts and a
literature analysis on autonomous driving (Section @). The research
outcome in this stage is a list of design requirements that the
system should support. In the second stage of system design
and implementation, we focused on the design of interactive
visualization tools to support these requirements (Sections [5] and [6).
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As third stage we validated our system by using two autonomous
driving scenarios as case studies to show how our system works
(Section [/) and then conducted interviews with domain experts
to collect their feedback on the usability and effectiveness of the
system (Section [g).

4 DESIGN REQUIREMENT ANALYSIS

In this section, we first give an overview of our work on design
requirement analysis. Then, we provide the fundamentals of object
detection in autonomous driving. Finally, we present the design
goal, data abstraction and the design requirements developed by
involving domain experts, following and adapting the design rules
developed by Miksch and Aigner [37].

4.1

Research in this stage included several parts. Firstly, we collab-
orated with an industrial expert (P1) to learn about the work of
model developers. The expert is from an autonomous driving
company focusing on the perception phase of autonomous driving
for over 10 years. At the same time, we conducted an analysis of
literature relevant to their work. Through the interactions with P1
and literature analysis, we firstly gained knowledge about the work
of model developers listed in Section We identified a set of
major concerns that model developers have had in their work listed
in Section and then inferred the goals of a system to address
these concerns.

Design requirements are based on the goals and validated by
domain experts. We drafted a list of design requirements and
invited four domain experts, including P1, to evaluate them. The
requirements were revised based on their feedback. After several
iterations of the feedback and revision of the requirements, we
finalized them with the consensus of all experts.

Overview of Design Requirement Analysis

4.2 Object Detection in Autonomous Driving

Object Detection in Autonomous Driving. The basic task of ob-
ject detection is object recognition and localization. In benchmarks
for object detection in autonomous driving, such as KITTI Vision
Benchmark [18]] and Oxford RobotCar [36], objects of interest
are often classified into these main categories: car, van, truck,
pedestrian, and cyclist. The input to a model is a set of images
captured by the camera, and the outputs include the following
results of each object detected by the model: the position of an
object in both 2D picture and 3D camera coordinate systems, the
object class, occlusion and truncation information, 3D information,
object angle, and the confidence level of detection. Inside the object
detection model, the output of the convolution filter applied to the
previous layer is called feature map, and each convolution kernel
corresponds to one feature map.

Evaluation Metrics of Detection Results. The evaluation of
the effectiveness of detection algorithms involves several concepts.
The actual labeling information of an object is called ground
truth, and the 2D or 3D border of an object on the 2D plane is
called a bounding box. The correctness of object localization is
determined by comparing the degree of overlap, or Intersection
over Union (IoU), between a predicted bounding box and a ground
truth bounding box with a threshold (e.g., 0.5); the correctness of
object identification is determined by comparing the confidence
score with a threshold (e.g., 0.7).
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The measure of object detection correctness can be written as:
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where o;; represents IoU, b;; refers to the j-th detection bounding
box of the object in the i-th image, and by, is the ground-truth
bounding box of the object. thres denotes the chosen threshold.
z;j is the detection result: 1 means a correct detection, and 0 an
erroneous one, which in this paper we define as a “case of failure”.

The final evaluation metric of a model in autonomous driving
is often a class-specific AP value [15]], referring to the average
precision corresponding to different recall values (confidence
thresholds) for a specific object class. An AP value is calculated

as:
Y Llsij > t]zij
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where N is the number of ground truth on the image of a given class;
s;j is the confidence score of each detection; ¢ is the threshold of
confidence score; r and p are the function of the recall and precision
corresponding to the confidence threshold, respectively; M is the
number of equally spaced r used to calculate AP; and R is the value
of r corresponding to the actual confidence level of detection.

4.3 Problem Abstraction

Drawing on interactions with P1 and literature analysis, we
identified a set of concerns of model developers when they evaluate
object detection models: the relationship between the times of
failure, the locations of the cases of failure, the performances of
the network features in the algorithm, and the synergy of those
scenarios that lead to detection failures.

Based on such understandings, we summarized our design
goals as to help developers understand When, Where and How an
object detection algorithm fails.

o When refers to temporal analysis of failures: In a given period
or timestamp, what is the state of the autonomous vehicle:
accelerating, decelerating, driving speed, turning, straightening,
etc.?

o Where concerns spatial analysis: What are the geographic
locations, road situations, and surroundings of the autonomous
driving vehicle and the positions of objects?

o How is about model analysis: How was an object detected by
the model, with data and evidences from the model?

In addition, the relationships among these three questions and their
joint contributions to detection results are also important.

4.4 Data Characterization

The data related to object detection tasks in autonomous driving
includes two main categories: raw data and model output. Raw data
includes tracklets, GPS, point clouds and images. Model output
includes features and detection results. More specifically, tracklets
refer to classes, sizes (length, width and height) and locations
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of labeled objects which are ground truth in object detection.
GPS data records the latitude, longitude, speed and other driving
status data of the autonomous driving vehicle. Point clouds are
detected by the vehicle’s LIDAR. Images are taken by the vehicle’s
camera. The images are input to the model, and then the model
outputs the detection results. Features inside the model can also
be extracted. Based on our goals, we abstracted relevant data into
three categories: model data, spatial data, and temporal data. Model
data refers to images inputs, the features of a model, and detection
results. Spatial data includes point clouds and tracklets. Temporal
data is related to vehicle state data from GPS and object sequences
from tracklets.

4.5 Design Requirement Validation

To develop a visual analytics system to support model developers,
We converted the goals into a set of three design requirements with
three sub-bullets. These requirements focus on the support for user
exploration to answer these three questions, jointly or individually.

With the drafted design requirements, we invited four domain
experts to evaluate and validate them. In addition to P1, we
interviewed three more experts in object detection and autonomous
driving. Among them, one is a senior specialist in computer vision
(P2), one is engaged in research on 2D/3D vision perception
of autonomous driving scenes (P3), and one on object detection
of autonomous driving (P4). They all have more 10 years of
experience in their field.

During the interview, each of four experts was given our design
requirements, and asked to rate them as “Acceptable”, “Need
Improvement”, or “Unacceptable”, with justifications. Based on
their ratings and justifications, we revised the requirements and
asked them to rate the revision. After several rounds of rating and
revising, we obtained the finalized design requirements after all
experts rated all requirements as “Acceptable”.

4.6 Design Requirements

The finalized requirements are as the following:

R1: Answer the questions When, Where and How individually.

« R1.1: Explore the timestamps of a time series the failure cases are
mainly distributed at, and the states of the autonomous driving
vehicle when failure cases happen (When).

e R1.2: Explore the surroundings, positions of failure cases,
especially the relative positions to the camera (Where).

e R1.3: Observe whether the feature maps of failure cases exhibit
abnormalities compared to normals (How).

R2: With one question set, explore the other two.

o R2.1: In a whole sequence of images, for objects poorly detected
over a period of interest, observe their surroundings and relative
positions to the autonomous driving vehicle, their detection
results, abnormalities of the feature maps, and the relationship
between the detection results, the spatial location and the features
(When — Where and How).

o R2.2: Similarly, for objects detected in a distance from the
autonomous driving vehicle, observe the timestamps they are
distributed at, whether the feature maps of failure cases exhibit
abnormalities compared to the normals, the detection results of
the objects, and the relationship between the spatial distribution
and the other three: temporal distribution, feature distribution
and detection results (Where — When and How).

o R2.3: For objects with abnormal feature maps, show their
temporal information, their spatial information such as relative
positions to the autonomous driving vehicle and surroundings, as
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Fig. 2. Workflow of our visual analytics system. Model data, temporal data and spatial data are ported into our system through two modules — micro
and macro, separately, and visualized in three views — features, temporal and spatial views. A control panel lets users conduct filtering and selecting
operations. Three interaction methods are provided to support three analysis requirements and gain insights into When, Where and How questions
on the cases of failure. Explore Distribution means choosing the control panel as an overview and exploring the details of the other three views by
filtering. Discover Correlation means selecting one of the views as an overview and then further exploring the information of the other two views and
the control panel. And Iterative Brush means selecting two, then exploring the other and the control panel.

well as their detection results. Moreover, the relationship between
them (How — When and Where).

R3: With two questions set, explore the other one.

o R3.1: In a sequence of images, for objects detected in a spatial-
temporal range of interest, observe whether the feature maps
of failure cases exhibit abnormalities compared to the normals
(When and Where — How).

o R3.2: Similarly, for objects both in a temporal range and feature
distribution region or feature map characteristics of interest,
observe their relative positions to the autonomous driving vehicle
and surroundings, their detection results, and the relationship
between the two (When and How — Where).

« R3.3: For objects in a spatial range and feature distribution region
or feature map characteristics of interest, observe the timestamps
they are distributed at, the states of the autonomous driving
vehicle, their detection results, and the relationship between the
results and temporal information (Where and How — When).

5 VISUAL ANALYTICS DESIGN

Following the requirements we designed a visual analytics system
(Figure [T with the proposed exploration workflow (Figure [2).
To better help users explore the system, we provide guidance in
Figure [TH for interactive exploration. We have annotations on each
view to guide users choose some view, which can be one or two
according to the design requirements, as an overview. Then zoom in
and filter, other views would be shown accordingly. In this section,
we describe the details of our design.

5.1

The micro-interpreting module focuses on the visualization of
the features from the CNN model. Feature information inside the
model is processed and visualized as Density Map (Figure mal)
and Object Projection (Figure ma2).

Micro-interpreting Module: Feature Visualization

5.1.1 Feature Processing Method

The features of each layer output inside the model are abstract,
and developers can hardly learn anything from massive numbers.
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Fig. 3. The processing flow of features. Image-level and object-level
processing methods to visualize features from the model.

To address this issue, we developed image-level and object-level
processing methods (Figure [3) to visualize the features from the
model, and to obtain the Density Map (Figure |I|-a1) and the Object
Projection (Figure [T}a2).

Image-level Processing: Inspired by Zeiler and Fergus [52],
as well as Selvaraju et al. [45]], we adopted a simple but effective
method to visualize the discriminative features extracted from the
network. We used the final convolutional feature maps, which
contain rich spatial and semantic information , , before the
output layer. We operated average pooling on feature maps along
the channel dimension to generate a global discriminative density
map.
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The input of object detection model is an RGB image of size
h xw. The model processes the image with Conv Layers and Output
Layer, and then outputs the results consisting of various types
of information about detected objects, such as bounding boxes,
locations, dimensions, and angles. We used such information to
visualize the 3D bounding boxes of objects in the input image.
We further extracted the final feature maps of the Conv Layers,
which are in the shape of /' x w' x ¢/, where ¢’ denotes the number
of convolution filters. Then, the feature maps were aggregated by
average pooling to obtain a 2D &’ x w' aggregated feature map in
the Feature Aggregation Layer. Next, the aggregated feature map
was restored to the shape of the original image but with only one
channel /& X w using up-sampling with bi-linear interpolation in
the Up-sampling Layer. Finally, the image-size feature map was
normalized and mapped to a selected color space, through which
we obtained the Density Map (Figure[T}al).

Object-level Processing: For object feature projection, we
made a region selection from the image-size feature map with
the size of 2D ground-truth boxes as seen in VATLD [20]. We
scaled them into the same h, X w, dimensions named object-level
feature map in the Object Extraction Layer, and reshaped them into
one-dimension vectors for t-SNE projection in Object Projection

(Figure[T}a2).

Fig. 4. Preliminary visualization of object detection results and features.

Green bounding boxes indicate ground truth and red bounding boxes are

predicted positions. The darker the color, the lower the activation value.

Left: lose two objects in the detection; Right: detect both objects.

5.1.2 Features View

The Features View (Figure[T}a) visualizes model data to provide an
insight into “How”.

Density Map. The Density Map in Figure[T}al is obtained by
the processing stages we discussed above. It provides an intuitive
insight into what is captured by the model. The RGB image in
Figure mal tells usenvironmental information (R1.2).

The bounding boxes for autonomous driving generally use

green to indicate labeled results and red to indicate predicted results.

As shown in Figure 4] the left image has five objects with green
bounding boxes, but only three are detected with red bounding
boxes consistent with three parts with high edge activation values
and low internal activation values in the Density Map. In the
right image, two objects are both detected consistent with two
parts of activation regions. The global discriminative density map
highlights the regions rich in semantic information. Through this
visualization method, developers can identify those cases of failure

in which the semantic information of objects is not well captured.
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To avoid distracting users and make the color design of the system
more coherent, we choose gray-scale instead of “blue to red” in
Grad-cam as the color space.

This view can be replayed over time so that model developers
can review how the feature maps, detection results, and surround-
ings change over time (R2.1). By comparing the density map with
the temporal information and bounding boxes of detection results,
developers can get an initial answer to the question of How the
model detects objects (R1.3).

Object Projection. The processed features and detection
results are combined in Figure maZ. It visualizes the processed
features of each detection and corresponds to loU on a two-
dimensional coordinate system, providing an overview to observe
the relative distance and distribution of the object-level features,
and further answers the question of How the model fails (R1.3).

Green is generally used to indicate good performance and red to
indicate poor performance in autonomous driving. To fit the habits
of domain experts, we encode IoU with the color, mapping “0 to
1” to “red to green”. There are also gray points, which represent
ignored objects. The model performs extremely poorly on these
objects as they are either heavily occluded, truncated, or too far
away from the camera. Thus, the final assessment metrics exclude
these objects. These colors are consistent with all other views
(Figure [T}e).

This chart supports zooming in or out and brushing a polygon
area of projection points. The selected objects will be highlighted
in this chart and the update of other views will be triggered
accordingly (R2.3). We chose other easily distinguishable colors
referring to ColorBrewer to encode interaction-related results.
As shown in Figure[T}e, the objects highlighted with orange, blue,
and yellow strokes are linked to the selected object, current time
and intersection of them in all other views (R3.1).

5.2 Macro-interpreting Module: Spatial-temporal Visu-
alization

The macro-interpreting module mainly focuses on model anal-
ysis from temporal and spatial perspectives. Each perspective
is supported by a view. Temporal View (Figure [I}b) includes
Temporal Distribution (Figure[I}b1, b2, b3). Spatial View (Figure[T}
¢) includes Scene (Figure[T}c1) and Trajectory (Figure[I}c2).

5.2.1

The Temporal View (Figure [I}b) visualizes the temporal data
and detection results from model data including the states of an
autonomous driving vehicle (Figure[T}b2) and object-level features
information with detection results (Figure [T}b3) in temporal
distribution (Figure [T}b1). Such information helps to provide an
insight into “When” and “How”.

Figure[T}bl is a timeline that provides the horizontal axis for
the following charts. It can be selected, dragged and played, and
the detected objects in current time will be visualized in blue in all
the views (R2.1).

Autonomous Driving Vehiche States. Figure[1}b2 shows the
velocity, acceleration, and wheel steering data from the GPS
monitoring of the vehicle, which provides a way to observe the
states of the autonomous driving vehicle (R1.1). We integrated
the line chart and two dashboards in AVS (the Autonomous
Visualization System) [2]] into Figure[T}b2 to share the timeline in
Temporal View and better align the analysis between the vehicle
states and the model detection results in the following chart. The

Temporal View
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Fig. 5. lllustration of Figure [T}b3. A detection sequence of one object is
put together, followed by a density map of the last moment. The object-
level density map at the bottom is extracted from density map in the same
way as object projection.

vertical line shows the values of line charts at the current time.
The horizontal axis can be brushed. The corresponding data of the
brushed time period will be highlighted in all views (R2.1).

Object-level Density Maps. Figure b3 visualizes the detec-
tion sequences of objects from the tracklets, as well as the detection
results from the model. This chart shows the correlation between
object-level features and detection results in temporal distribution
and further combines the analysis tasks of When and How (R1.1,
R1.3).

As shown in Figure [5} the horizontal axis represents the
timestamps of the whole sequence, and the vertical axis represents
different objects. There are two design alternatives: 1) each object
occupies one row, 2) merging objects shown in different periods
into the same row to reduce the waste of space. In most cases
detected objects only appear in a specific period, so such merging
will not add too much misleading id information of objects and can
save space. An object in a timestamp when the camera took the
image is visualized as a combination of a rectangle and a snapshot
of a density map. The object-level density maps are dimensionality
reduced to one dimension by PCA and encoded to the height
of the rectangles in each row. A pattern between features and
detection results could be detected that the higher the height, the
better the detection results tend to be in Figure [T}b3. Showing all
snapshot sequences is actually not very informative and distractive.
To reduce the density maps, the last density map of each object
is displayed after the last rectangle. The objects are presented in
classes with different boxes.

Each density map has a “Scale Up” function for easy viewing
when hovering as shown in Figure [T}b3. Developers can click the
detection sequence of one object or the final density map of interest
to select an object (R2.3), which would also display the density
maps of the whole sequence of this object at the bottom.

5.2.2 Spatial View

The Spatial View (Figure [T}c) visualizes the spatial data including
Scene (Figure[T}c1) and Trajectory (Figure[T}c2) to provide insights
into “Where”.

Scene. Figure |I|-cl is a 3D spatial stereogram drawn with raw
data that contains the point cloud data from the vehicle-mounted
LiDAR, latitude and longitude information from GPS, and tracklets
of labeled objects (e.g., relative positions, dimensions, and classes).
It is a key view for spatial-temporal scene perception, which
displays sufficient information of Where (R1.2).

We reused the 3D view in AVS with customized changes in
our design. In AVS , to show the obstacles around the objects,
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the LiDAR point cloud is visualized by the point set. To show the
specific road and location environment, the latitude and longitude
information from GPS is used to draw the map. With the 3D
bounding boxes of the labeled objects drawn in the spatial scenes,
developers can fully perceive the spatial information between the
objects and their surroundings. We changed the colors of different
classes of 3D bounding boxes in the current time to different shade
levels of blue to distinguish them from other colors we used in other
views. Bounding boxes for objects other than cars, pedestrians, or
cyclists are removed, because they are not a concern here.

/’/V m

=

(a) (b) (c)

Fig. 6. Three view modes of Scene. (a) Perspective view at the car; (b)
Orthographic view; (c) Perspective view from the car.

Developers can select a perspective through the control in the
upper left corner, and three view modes are provided as shown in
Figure The scene can change over time, and this chart is linked
to other charts through time and selected object.

20m

v &

= =

(a) (b) (c)

Fig. 7. Visualization of trajectory patterns. (a) facing the autonomous
vehicle approaching; (b) facing the autonomous vehicle turning; (c)
turning in front of the autonomous vehicle and driving away.

Trajectory. Trajectory (Figure mCZ) combines the relative
position in the bird’s eye view from tracklets and detection results,
and arranges them in the order of detection. Developers can
combine such information in answering the questions of When
and Where (R1.1, R1.2).

The basic trajectory visualization method such as trajectory
clustering by Lee et al. usually visualizes the sequences that
connect the absolute positions of the object. We combined the
detection results and detection field with the object trajectory to
have a global sense of the distribution of detection results in space.
Considering that a global view in Scene is provided, the ego-centric
view centered on the autonomous vehicle is also important, so
we adopted such an ego-centric visualization form and relative
positions. The rectangle at the bottom represents the camera of the
autonomous driving vehicle, which is fixed as a reference. The arc
in the view marks the position of 20 meters away from the camera,
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as a reference line for the relative distance perception. Each point
indicates one object in one detection, and each line represents
the trajectory of an object, and the direction of each arrow is
the movement direction of the last two detections’ positions of
one object, which always combines trajectory lines to indicate the
whole segment overall direction of relative movement. The dashed
line indicates discontinuous detection time, i.e., the object has
disappeared between the beginning and end detection of the dashed
line. As shown in Figure[7] three different trajectory patterns could
be visualized.

Developers can zoom in and brush later (R1.2). The brushed
objects and corresponding paths will be reserved and redrawn. The
update of other views will be triggered accordingly as well (R1.2,
R2.1).

5.3

We designed the following interaction methods to link all views to
explore.

Filter/Select. Figure[T}d is composed of two controls. Figure [T}
d1 supports developers to select the data by checking what
categories (e.g., car, cyclist, or pedestrian) detected objects belong
to, and what detection results (e.g., tp—true positive, fn—false
negative, or ignored) may look like. The types of objects and the
percentage of detection results are shown below. When developers
explore the other views, the statistics of the filtered data are also
calculated in real-time as shown in Figure b2, which can be
compared with the overall statistics. Clicking the restart button in
the upper right corner can restore the data to the initial state for a
new round of exploration. Clicking the play button will update the
data with orange and blue consistent with the Scene and timeline,
but developers need to re-click “pause to brush” to stabilize the
brush.

The control in Figure[I}d2 takes the form of parallel coordinates
to show the high-dimensional labeled data, which is plotted with
IoU and locations of labeled objects, including detailed relative
orientation (alpha and rotation-y) and position (x, y, z in the camera
coordinate system: rightward, upward, and forward distances).
Ignored objects are not drawn on the first axis, i.e., loU, since they
are not included in the AP calculation. Each axis can be brushed,
and the intersection will be taken to filter the data (R1, R2.3).

Explore Distribution. The control panel in Figure[T}d is used
as an overview. After filtering low IoU, tp or fn, developers are
able to observe the selected objects in other views. In addition, they
can choose to observe the angular information and relative position
information through other axes. With the Temporal Distribution,
developers can examine the corresponding time position on the
timeline. More intuitive information about spatial-temporal scenes
and the states of the autonomous driving vehicle of the detection
can be obtained in the Scene and the Density Map. This interaction
is used to explore the problem of When, Where and How the objects
are poorly detected (R1).

Discover Correlation. One of the three views is used as
an overview to further explore the other two and the control
panel. For example, after observing the Temporal Distribution
and the corresponding detection results, developers can brush
a time range of interest. Then, they can investigate the object-
level density maps in the Temporal View, the Object Projection,
the Trajectory and the parallel coordinate diagram with IoU and
relative location information. They can drag the timeline to the
corresponding position to play, perceive the actual spatial-temporal

Interactive Visualization to Interpret
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scenes through the Scene and images in the Density Map, and
explore the relationship between the features and detection results
through Figure [[}al. Through this interactive exploration, for
objects detected over time that developers are interested in, they
can observe the spatial-temporal environment, the features, the
detection results, and the relationships of these results to spatial
locations and features (R2.1).

Iterative Brush. Two of the three views are used as an
overview together to explore the other one and the control panel. For
example, combining the spatial-temporal information and detection
results from the Temporal View, parallel coordinate diagram and
Spatial View, developers can select the objects by the iterative brush
of their interest and playing the timeline. Then, they are capable
of observing the selected objects in other views. This interaction
helps to explore how objects in some spatial-temporal regions
are detected, their feature distribution, detection results, and the
relationship between results and features (R3.1).

6 IMPLEMENTATION

We used an open-source system, AVS, as the underlying framework
for system development. AVS [2]], is a web-based 3D autonomous
driving data visualization tool. It contains two parts, XVIZ and
StreetscapeGL. XVIZ provides a stream-oriented view of the scene
over time, and a declarative user interface system that constructs
XVIZ streams based on the data to be transmitted to StreetscapeGL.
StreetscapeGL is a web toolkit for building XVIZ protocol data,
which provides components to visualize XVIZ streams in 3D views
and various charts.

With AVS, we built the playable point cloud maps and line
charts of the states of an autonomous driving vehicle. We added
to StreetscapeGL various designs, including the features view
for visualizing micro-level features including density map and
object projection, and the temporal distribution and trajectory for
visualizing macro-level spatial-temporal scenes. We also modified
the scene and line charts to optimize the coordination among
different views, and added controls to enable the interactions
between our own implemented views and the original stream data
visualization views of AVS.

7 CASE STUDY

To demonstrate how our system can help developers understand and
diagnose models, we present two case studies with two different
autonomous driving scenarios. We first introduce how we processed
and prepared data for case studies, and then describe each case
study individually.

7.1 Data Processing

We chose the KITTTI [|18]] Dataset, a popular and well-known dataset
in autonomous driving. There are many sequences that last about
10 - 120 seconds for investigation and benchmarking. Our system
can load different pieces of data for investigation and we only
show the selected cases for demonstration. After extracting the
sequence data, we first trained a 3D object detection model DALCN
by Ding et al. [14] using one-half of the images in our dataset.
We then selected two segments of autonomous sequence data for
case studies. The images in these two segments have labels but
were not used for training. By putting them into the previously
trained model, we recorded the model outputs on object detection.
We collected feature maps from the layer before output layer and
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the final results, including bounding boxes, classes, occlusion and
truncation information, locations, dimensions, angles and scores.
We used the output results of the model and ground truth to
calculate the IoU as the measuring metric of the detection results,
pre-processed the feature maps, and ported them into our system
together with the tracklets, LiDAR point clouds, GPS, and the
images of the sequence data.

7.2 Case 1: Autonomous Driving on a High Way with
the Presence of Other Objects

This case study concerns the movement of an autonomous driving
vehicle on a highway. At first, the vehicle makes a right turn,
and then continues on the highway where other cars, cyclists
and pedestrians are presented. The whole driving process lasts
about 32 seconds, with 314 timestamps. The model identified 233
timestamps of images and detected 1314 objects. Here, we follow
the three interaction methods described in Section @ to explore
the sequence data of this case and analyze the model performance.
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Fig. 8. Interaction methods in Case 1. I1: Exploring Distribution; 12:
Discovering Correlation; 13: lterative Brush. Bad detection results in
c2 are mostly related to cyclists and pedestrians, as shown in d2, which
indicates the effectiveness of aggregation in Object Projection. Most
cyclists and pedestrians are close to the vehicle, as showed in a3 and d3.
The effectiveness of aggregation in Object Projection is also visualized in
c4, with only two objects in d4.

Exploring Distribution. As shown in Figure @al, bl, cl,
dl1, we can only find that the cases of failure happened at both
distant and adjacent locations to the camera. The time and feature
distribution of failure cases are scattered (R1) with the comparison
of Figure[I] which is not informative enough. This indicates that
further interactive exploration is needed to obtain insights into
When, Where and How the cases failed.

Discovering Correlation. Figure 81 and Figure [T}a2 show
that most of the points clustered around the ignored points are
poorly detected. We are interested in such points, so explore
their spatial-temporal distribution by selecting and brushing in
Figure[8}a2, c2 (R2.3). Figure[8}c2, d2 shows that more of these
points are in the classes of cyclist and pedestrian (cyclist: 12.7%,
pedestrian: 63.4%, car: 23.9%) compared with the overall (cyclist:
6.3%, pedestrian: 7.7%, car: 86.0%) in Figure[8}d1, and they are
in proximity to the camera as indicated by Figure [8b2. The model
did not achieve high accuracy in detecting these two classes of
objects even when they were at close distances. One explanation
for this failure is that these two classes make up a small percentage
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Fig. 9. Discovering Correlation example. Objects with bad detection
results indicated by the end density map during the turning process in
b1 are mostly with obscure activation boundaries in b2 and farther than
others in a2.

of the training dataset, compared to the class of car (cyclist: 8.8%,
pedestrian: 2.9%, car: 57.2%). This small percentage also explains
why the relationship between the relative position and the JoU
(z-axis in Figure |I|-d2) is inconsistent with the intuitive belief that
closer distance means more accurate detection.

Brushing the objects closer to the camera in Figure |§|-a3, we
observe that their distribution is more concentrated in Figure @03
and this is consistent with the previous analysis that cyclists and
pedestrians mostly appear closer to the camera in Figure [8}d3
(R2.2). We are interested in a small set of points that are closer
together in Figure [8}c3, which will be explored in subsequent
interactions. We are interested in the turning detection results, so
we brush the consistent period, and observe the trajectory and
detection sequences of objects in Figure[O}al, bl (R2.1). As shown
in Figure O}a2, the sequences with bad detection results indicated
by the last density map (which mostly have obscure activation
boundaries in Figure E|-b2) are far away from the camera (R2.1).

Iterative Brush. For the cluster and the object-level density
maps we just mentioned, we continue to explore and find that
this cluster represents only two objects, as shown in Figure [8}d4,
reflecting the fact that the feature distribution in Figure [8}.c3 knows
not only the aggregation of the detection results (Figure 8}c2), but
alsoaggregations of the same object (R3.3).

We try to find some patterns through our interaction methods.
Firstly, we select a period with more objects appeared in Figure
e (D). In Figure [0}, we observe two end density maps that
are clearly inconsistent with others, so we click them to get
their distributions in other views (). We move the timeline
in Figure E-d to the corresponding position (3)) and find the
actual location of the objects in Figure [I0}b () by looking at
the selected position in Figure [I0}a (@). Combining Figure [10}
¢ (®) with the dynamic play function of the views, we find
that the sharper activation boundaries are consistent with better
detection results. The fact that the selected car is parked provides
macro interpretability to better detection results. The sequence
with uneven activation boundaries is associated with bad detection
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Fig. 10. The whole exploration process from the case. The numbers of (D-®) indicate interaction step sequence. (f) The first sequence with sharper
activation boundaries and good detection results corresponds to the parked car in (a, b, ¢); and the second sequence with uneven activation

boundaries and bad detection results corresponds to a cyclist in (a, b, c) close to the pedestrians and the other cyclist.

5 1 5 20 25 % 35 40 45

Fig. 11. Overview distribution of Case 2. (a, b) The objects closer to the
ignored are mostly detected with poorer results. (c, d) The closer the
distance, the better the detection.

results and proximity to the pedestrians and the other cyclist, which
may provide micro- and macro-level interpretability to the cases of
failure. Thus, using interactive visualization, we are able to explain
the failed predictions from micro and macro perspectives. (R3.2)

7.3 Case 2: Autonomous Driving with the Presence of
Other Objects Parked on Both Sides of Road

This case study is built on a scenario in which an autonomous
driving vehicle is driving when there are cars, cyclists and
pedestrians parking around. We try to find some detection patterns
in this case and summarize them as occlusion, turning and deviation.
The parking process lasts about 45 seconds, and includes 435
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Fig. 12. Occlusion pattern. (b1) Car2 is not badly occluded; (b2) The
detection results of car2 gradually become better as the autonomous
driving vehicle approaches; (b3) As car2 approaches car1, the detection
model might more focus on car1.

timestamps. In total, 194 timestamps of images and 1596 objects
are detected.

From the projection shown in Figure [T} there are two distinct
clusters in Figure [TT}a: one mostly consists of objects with poor
detection, including ignored objects and objects close to them, and
the other has objects with better detection results. The trajectory
of objects (Figure [TT}c) shows that there are several turnings in
this sequence. There is an obvious trend in Figure [TT}c and z-axis
in Figure [TT}d that the closer the distance of an object is to the
vehicle, the better the detection result is. Most of the lines are
distributed in the x-axis [-10,20], indicating that objects appear on
both sides of the autonomous vehicle.
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Fig. 13. Deviation pattern. (b, c, d, f) The car is close but still poorly detected due to the relative position deflection and occluded by car4; (a) The
angle-dependent alpha and rotation-y of the deflection angle information differ from the other objects; (e) The feature distribution is away from good

detection concentration.

@ wheel

Fig. 14. Turning pattern. (d1) Detection before the dashed line; (d2) The
detection on the dashed line. Although the bounding box is drawn, the
object is ignored in the AP calculation because it is truncated to a greater
extent; (d3) Detection after the dashed line.

Occlusion Pattern. We select a period at the end of the
sequence in the Autonomous Driving Vehicle States. Figure |12}a
shows one interesting phenomenon: there are two trajectories that
do not conform to the pattern that the closer the distance is, the
better the detection is. In the region where they intersect, two
trajectories have a process of getting better and then worse. We
interpret this observation as follows. After dragging the timeline
and picking the car at the appropriate position in Figure [T2}c,
the correspondence of the car in Figure [T2}¢ and Figure [T2}a
shows that car2 and car3 may be obscured by carl. We play the
timeline and combine the real scenes and object-level density maps
to understand the detection results’ change of car2. We find that
car2 is not badly occluded when the autonomous vehicle is far
away in Figure @-bl, and the detection results of car2 gradually
become better in Figure b2 as the autonomous driving vehicle
approaches. However, as car2 approaches carl, it is obscured by
carl and the detection results become worse again in Figure [I2}b3
(although the difference between Figure [[2}b2 and Figure [I2}b3
is not so obvious, density maps of car2 in Figure [T2}d could help
to interpret the trend of getting better or worse. We think that
in Figure [T2}b3, the detection model would focus more on carl
because it is closer compared to Figure[T2}b2). Then as the distance
is drawn closer, the detection results become gradually better again.
(R3.1)

Turning Pattern. In Figure @-a, we see a large change in
the wheel angle, select the corresponding period, and observe a
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trajectory in Figure @-b where the detection result first becomes
better, then worse and then better. The dashed line indicates that
the car appears and disappears. Dragging the timeline and selecting
the car at the appropriate location in Figure [I4}c, we learn that
the selected car disappears from the detector’s field of view due to
truncation when the autonomous driving vehicle turns (Figure [T4}
d2). Moreover, the detection results are poor at large angle change
of relative position with analysis of the real scene in Figure [T4}d1,
d2, d3. The density maps of the car in Figure [T4}e could assist in
interpreting the detection results. (R3.1)

Deviation Pattern. In Figure [[3}a, by brushing objects within
20m of the forward distance from the camera, we spot some lines
with lower IoU. Observing that there is an object in Figure @-
f with lower loU, we select it and drag the timeline, and find
that in Figure @b, the orange object appears in the right front
position. Thus, we select the object at the corresponding position
in Figure [[3}c. With the adjustment of the timeline combined with
the real scene in Figure Ed, we find that the car is close but still
poorly detected due to the relative position deflection and occluded
by car4. The angle-dependent alpha and rotation-y of the deflection
angle information in Figure [T3}a also differ from those of other
objects, which could help to explain the deviation. The feature
distribution in Figure [T3}e can verify the pattern of good detection
concentration found in the overview distribution. (R3.3)

8 EXPERT STUDY

We conducted an expert study to evaluate the usability and
effectiveness of our system.

8.1 Study Process

We recruited seven experts, P1 - P7, to conduct an interview study
to evaluate the usability and effectiveness of our system. Four of
them, P1, P2, P3, and P4, were involved in the study of validating
design requirements mentioned in Section [3} Three new experts,
P5, P6 and P7, have been in the area of computer vision for
autonomous driving for more than 5 years, and had no knowledge
about our research before being recruited. We interviewed each of
them separately.
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Each interview session includes a 20-minute introduction, a
7-minute video presentation, 30-minute exploration using the think-
aloud method by Van et al. [49], and a semi-structured interview
lasting between 20 to 30 minutes. The video presentation introduces
the user interface and interaction methods of our system, and
demonstrates our exploration processes to discover the patterns
similar to those mentioned in Section[/| In the exploration phase,
we instructed all experts to watch the interaction methods and
Case 1 in the video and asked them about their understanding of
the video. Two experts, P3 and P5, volunteered to use our system
to reproduce the analysis result of Case 1 and freely explore the
system.

In interviews, we asked all the experts questions in four
categories: their understanding of all our views and the three
types of interaction methods, their thoughts about our analytical
methodology, their opinions on the findings of case studies and
exploration results, and their judgment on the values of the system
to model improvement.

8.2 Results from the Exploration Phase

In the exploration session, the two experts, P3 and P35, correctly
performed three interaction methods (Section[5.3] They successfully
found the patterns in Case 1, and their successes imply their full
understanding of our system. During the exploration process, P5
discovered how the detection of a cyclist around might be affected
by light in Case 1. P3 found a failed detected car that was obscured
by a vehicle when the autonomous driving vehicle was turning,
a phenomenon that fits the findings of Case 2. They also noticed
several car movement trajectories that lead to better and worse
detection results and identified some occlusion patterns.

We also recorded those views used by two experts in their
exploration processes. Our data showed that all views in our system
had been used. The experts made full use of Object-level Density
Maps and Scene, and said that the image in the upper right corner
aided their perception of the real scene. P5 frequently used the
Statistics in Figure [T}d1 to filter and parallel coordinate plot on
the left to see the distribution, and indicated that acceleration and
velocity were possibly used for other situations, such as when
the autonomous driving vehicle is in special road conditions or
emergency braking.

8.3 Results from the Semi-structured Interviews.

Data from interviews showed that all experts confirmed that they

understood the views and interaction tools of our system.

« Analytical Methodology. We asked if our interface design and
interaction are easy to use and understand, and they were all
positive about our design. P1, P2, P3 and P4 all felt that
our visualization design fully met their needs. P5, P6 and
P7 confirmed that these visualizations were exactly what they
wanted to know and the analysis workflows could improve their
daily work efficiency. We also asked experts about what other
information they would like to know. P2 suggested that we add
some attribute information of objects, such as color. P4 and P5
suggested more visualization designs on model features, such as
multi-scale layers. Adding light and weather conditions was also
mentioned (P2, P5, P6, P7).

o Cases. We interviewed the experts about their understanding of
the cases we showed them and whether we should consider other
scenarios of interest. They confirmed that they understood the
findings to the When, Where and How questions demonstrated in
our cases, and believed they are useful for model understanding.
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P5 indicated that occlusion and light were the main causes
in terms of results, consistent with his past experience. He
concluded that the algorithm has poor detection results for small
objects. P4 would like to explore more patterns, such as those of
acceleration, deceleration and path planning.

Insight and Inspiration. We asked whether those patterns that
we explored could help the understanding of failure detection in
these scenarios and whether the insights could help to improve
the model. They all agreed that these patterns deepened their
understanding and helped to improve the model in the future.
P2 believed that “These explored patterns not only make the
original understanding verified, but they also allow us to quickly
find some problems and summarize some classifications, which
can improve efficiency.” P5 said “The understanding of the
spatial-temporal scenario is sufficient and I expect the system
to further integrate more information within the model.” P6 said
“This is a powerful tool to verify the results of the model.” For
improving and enhancing the model, P7 said “It is very useful for
extracting special scene data, and increasing its training ratio
can improve the performance of the model in special scenes.” P2
indicated that “It is helpful, but the improvement of the model
itself is more important.” P4 stated that “Previously we had
only trained and tested the whole dataset to get the accuracy,
or visualized the bounding boxes, without having an overall
view of the results”, and he believed that “The system helps
to analyze the scenarios for failed samples, to augment data,
and to improve the model performance”. P3 believed that our
method is very useful for model improvement, and said that
“Analyzing the failure detection cases of small objects at long
distances can help us design methods such as data augmentation,
multi-scale feature fusion and information interaction between
multiple objectives. By analyzing the feature maps of obscured
objects, we can design loss functions, optimize the design idea of
anchor and change the matching strategy.”

Overall, all seven experts fully understood our system and
were positive about its usability, effectiveness, and implications for
future model enhancement.

9 DISCUSSION AND CONCLUSION

Comparison and Generalization. Previous interpretable methods
largely focused on feature representations in models, or micro-
level information as discussed in our research. Our approach
explains model failure from a new perspective—by combining
macro-level temporal and spatial context information with micro-
level feature interpretations. Model developers can use our approach
to improve the efficiency of error analysis, and discover spatial-
temporal patterns in specific scenarios when the model fails. These
findings could be used to perform data augmentation to improve
algorithm performance.

Our approach can be extended to other interpretable work with
algorithmic errors by considering contextual factors. For analysis
involving spatial-temporal data, our method can be directly applied.
For analysis involving other factors, such as interactions among
models in the same system, our method suggests the consideration
of the integration of the visualization of macro-level relationships
among these models, such as hierarchy view or network view, with
traditional views on model features. Model developers can use our
approach to explain model errors and improve model effects from
a spatial-temporal perspective by combining information about the
features inside the model.
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Limitations and Future Work. There are three straight-
forward directions of improvements of our work: First, although
we provided comprehensive interpretability of spatial-temporal
scenarios, our interpretability at the micro level can go deeper. Our
system only visualizes the outputs of the network layer in front of
the output layer by up-sampling, and may not provide sufficient
insight into the How question. More work is needed to meet the
needs at the level of feature visualization, such as multi-scale
network features as suggested by P4 and P5 in Section[8] Second,
additional requests from domain experts for additional information
visualization in Section E] can be considered in the future, e.g.,
adding macro information such as light, weather and object color.
Third, the detection results are not integrated into Figure c1,
and the inclusion of real-time detection results in the visualization
scene could be considered in the future to make the system more
intuitive.

Then, our current system largely focuses on the analysis of
failure scenarios with a time length at the level of minutes, and we
have not tested the scalability of the system with longer cases.
This is largely due to the fact that the available public data
sets only provide scenarios with such time lengths. To analyze
longer scenarios, our system needs to consider the challenge in
computational powers demanded by such scenarios. While data can
be processed offline, real-time interaction with a large data volume
could be a bottleneck. To improve the scalability of our system,
measures like better system architecture to accommodate longer
scenarios or effective data aggregation methods across different
scales can be considered.

Furthermore, to fully understand the effectiveness of our
system on the work of model developers, more user studies are
needed. Considering the complexity of the task in the analysis of
model failures, we believe that a longitudinal study involving the
deployment of our system to model developers and the collection
of behavior data through their real actions will provide reliable
evidence of the system’s effectiveness.

Lessons Learned. Autonomous driving technologies have been
growing rapidly recently, and visualization in the field has just
started. There is a great demand for visualization in autonomous
driving. Therefore, visualization is very important in this field of
research. The exploration of interpretability is challenging. Our
approach validates that combining spatial-temporal relationships
with information from the neural network can provide new insights
for model developers.

Due to the complexity of the knowledge in the field of
autonomous driving, it is challenging to fully understand the
breadth and depth of the problems model developers encounter.
To support their work, visual analytics researchers need to gain
in-depth knowledge of this field and the nature of the work of
model developers. Doing so will allow visual analytics researchers
to approach the problems from the perspective of users, and then
build better systems.

Conclusion. In this research, we propose a visual analytics
approach and develop a system to combine micro-level model
features and macro-level contextual factors, spatial-temporal in-
formation, to provide in-depth visual analysis of object detection
models in autonomous driving. Our case studies demonstrate the
rich functions of the system in analyzing different autonomous
driving scenarios. Our interviews with domain experts show that
our approach can improve the interpretability of object detection
models and help model improvement through the analysis of model
failures. We expect our research will offer some new ideas for
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the interpretability of object detection in autonomous driving by
combining information from multiple perspectives and supporting
rich exploration-oriented user interactions with models.
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