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Abstract. Visual analytics science develops principles and methods for efficient 

human-computer collaboration in solving complex problems. Visual and interactive 

techniques are used to create conditions in which human analysts can effectively 
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utilize their unique capabilities: the power of seeing, interpreting, linking, and rea-

soning. Visual analytics research deals with various types of data and analysis tasks 

from numerous application domains. A prominent research topic is analysis of spa-

tio-temporal data, which may describe events occurring at different spatial loca-

tions, changes of attribute values associated with places or spatial objects, or move-

ments of people, vehicles, or other objects. Such kinds of data are abundant in urban 

applications. Movement data are a quintessential type of spatio-temporal data be-

cause they can be considered from multiple perspectives as trajectories, as spatial 

events, and as changes of space-related attribute values. By example of movement 

data, we demonstrate the utilization of visual analytics techniques and approaches 

in data exploration and analysis. 

5.2.1 Introduction 

The science of visual analytics (Thomas and Cook, 2005) develops principles, meth-

ods, and tools to enable synergistic work between humans and computers through 

interactive visual interfaces. Such interfaces support the unique capabilities of hu-

mans (such as the flexible application of prior knowledge and experiences, creative 

thinking, and insight) and couple these abilities with machines’ computational 

strengths, enabling the generation of new knowledge from large and complex data.  

In this chapter, we describe visual analytics approaches that are related to the 

study of urban mobility data and discuss how visual analytics can support analysis 

of such data and informed, justifiable decision making. We address different stages 

of the urban data science process, including data quality assessment, data transfor-

mation, exploration and analysis, and indicate possibilities for model building, eval-

uation, and refinement. We conclude this chapter with a summary of achievements, 

unsolved problems, and future research directions. 

We demonstrate the utilization of visual analytics techniques in a process of ex-

ploration and analytical reasoning using a real world data set. In the EU-funded 

Track&Know project1, one of industrial partners collects Europe-wide tracks of pas-

senger cars. The data are collected for insurance purposes under vehicle owners’ 

informed consent, aiming at enabling transparent pricing and facilitating analysis of 

accidents. For these purposes, it is necessary to have an understanding of the context 

in which the vehicles move, which includes the traffic around. There are several 

questions that require answers for understanding traffic: What are the major flows 

and their properties? How do they vary over time? What is the composition of the 

types of the cars appearing on streets? What are regular and irregular trips and how 

are they distributed in space and time? etc. Answers to these questions can be valu-

able for a variety of practical applications such as assessing which part of traffic can 

                                                           
1 Track&Know, grant agreement 780754: https://trackandknowproject.eu/  



3 

be potentially served by publicly shared vehicles or by electric cars, evaluating ap-

plicability of various car sharing schemes, identifying and assessing different driv-

ing styles, and investigating events, such as traffic accidents, in their context. 

5.2.2 State of the art 

Batty (2013) considers a city as a system composed of flows (between locations and 

between activities) and networks of relationships and interactions among various 

entities. For understanding these factors of the urban context, a variety of different 

data sources is considered. There are studies (e.g. Kesting and Treiber 2013) based 

on stationary sensors such as traffic counters that record aggregated characteristics 

(how many cars passed a given street segment during some time interval and what 

was their speed). Such sensors record aggregates but do not allow tracing vehicles. 

Another kind of stationary sensors is docking stations for rental bicycles (or, poten-

tially, other kinds of shared vehicles). Usually these sensors provide only general 

characteristics (overall capacity, numbers of docked bicycles and empty slots) and 

their aggregates over time intervals. However, sometimes more detailed data are 

released, enabling analysis of the moves of the vehicles between the docking sta-

tions (Beecham and Wood, 2014). Some researchers approximate mobility from 

space- and time-referenced social media records. A prominent example is provided 

by Lansley and Longley (2016) who studied in detail the distribution of the message 

topics in space and their variation over time. Itoh el al (2016) studied data of smart 

card usage in local trains together with social media records for reconstructing tem-

poral characteristics of major flows and understanding abnormal situations. 

Several review papers discussed visual analytics approaches to analyzing mobil-

ity and transportation. A review by Andrienko and Andrienko (2013a) considered 

approaches from the data processing perspective: looking at trajectories, clustering 

trajectories, transforming times in trajectories, and studying attributes, events and 

patterns in trajectories, followed by generalization and aggregation of trajectories 

and tracing derived flows. A more recent review on visual analytics of mobility and 

transportation Andrienko et al. (2017) outlines approaches used for following prob-

lems: understanding details of individual movement, studying variety of taken 

routes, assessing movement dynamics along a route, linking origins and destina-

tions, characterizing collective movement over a territory, detecting events and 

studying their distributions, contextualizing movement, and studying impacts and 

risks.  

Markovic et al. (2019) present a viewpoint of a road transportation agency, men-

tioning the following problems of interest: demand estimation, modeling human 

behavior, designing public transit, measuring and predicting traffic performance, 

assessing impact on environment, and improving road safety. 

The reviews indicate the need to consider the movement data from multiple per-

spectives. We follow this approach in our work. 
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5.2.3 Mobility Data: properties and problems 

To demonstrate the data analysis workflow, we use trajectories of 4,521 passenger 

cars within the Greater London area that were recorded during two regular weeks 

in winter 2017; 4,284,493 position records in total. Each position record consists of 

an anonymized identifier of a vehicle, time stamped geographic coordinates, and 

attributes such as momentary speed and heading, GPS signal quality etc. Transport 

for London estimates the number of all cars registered in London as about 2.6 mil-

lion2. Respectively, our data set covers about 0.2% of the active “population” of the 

passenger cars. Figures 1 and 2 show the spatial and temporal distributions of the 

recorded trajectories. From the map (Fig.5.2.1), we can recognize the major roads 

and populated areas.  

 

 

Fig. 5.2.1. Spatial footprint of all trajectories in the data set. 

The time histogram (Fig.5.2.2) reflects the distribution of the counts of distinct 

cars per hour, starting from Sunday midnight: 2 weeks x 7 days x 24 hours = 336 

hours in total. The time histogram clearly shows the weekly cycle and distinct pro-

files of weekdays and weekends. 

 

                                                           
2 http://content.tfl.gov.uk/technical-note-12-how-many-cars-are-there-in-lon-

don.pdf 
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Fig. 5.2.2. Temporal profile of the data: the bars represent the car counts per hour.  

For assessing the quality of the data set, we follow the approach proposed by 

Andrienko, Andrienko and Fuchs (2016). Possible problems in movement data in-

clude problems of coverage and accuracy that may occur in all components of the 

data, namely space, time, identifiers, and attributes. Respectively, we assess prop-

erties of all data components and their combinations. 

 

 

Fig. 5.2.3. Sampling rates. 

For the temporal component, we start with examining the sampling rates, i.e., the 

time intervals between consecutive position recordings for the same car. The statis-

tics (Fig.5.2.3) demonstrates that the most frequent sampling rate is around 1 minute 

(59-61 seconds). A much smaller subset of points is characterized by the sampling 

rate of about 2 minutes, and only a few points have 3 minutes intervals to the next 

points. All other intervals appear in the data infrequently. Next, we checked if the 

sampling rate of 1 minute is typical for all cars. For this purpose, we calculated the 

median sampling rate for each car. The results demonstrate that more than 98% of 

the cars have the median sampling rate of 1minute +/- 1 second. However, we have 

identified a few outliers: about 100 cars that had only a few positions recorded and, 

correspondingly, rather arbitrarily sampling rates; 9 cars with many recorded posi-

tions but the median sampling rates of 3 to 5 minutes; and 2 cars with very high 

sampling rates (13 seconds). Such outliers need to be separated in further analysis. 



6  

[Type here] 

 

We have also identified several thousands of duplicate pairs of an identifier and a 

time stamp and excluded the duplicates. 

 

 
 

 

Fig. 5.2.4. Top: frequency distribution of the distances between consecutive points of trajectories. 

Bottom: long distances between consecutive points are caused by selecting data that fit in a chosen 

bounding rectangle (border effects). 

Fig.5.2.4 shows the frequency distribution of the distances between consecutive 

position records, with the bins corresponding to 10m intervals. We can observe ma-

jor peaks at 420m and 1760m. Since the typical sampling rate is 1 minute, these 

peaks correspond to displacement speeds 25.2 and 105.6 km/h. We also observe 

narrower peaks at 100m (6 km/h) and 2000m (120 km/h). The former may corre-

spond to small displacements caused by waiting at street intersections. We inspected 

the second peak separately. Such distances between points appear either at high-

ways and may mean that some points were not recorded (e.g., due to bad satellite 

connection), or at the borders of the studied area (Fig.4 bottom). These large dis-

placements at the area boundaries are artifacts of data selection by a bounding rec-

tangle. 

Figure 5.2.5 presents the frequency distribution of the instant speed values in the 

positional data after excluding numerous (about 778,000) stationary points and a 
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few outliers with speeds higher than 180 m/h. The clearly visible peaks roughly 

correspond to the speed limits on different categories of the UK roads. 

 

 

Fig. 5.2.5. Frequency distribution of the speeds after removing stationary positions and outliers. 

Figure 5.2.6 shows the frequency distribution of the measured vehicle headings 

in the non-stationary points. There are two strange pits around the values 90 and 

270 degrees. It is quite unlikely that these directions were really much less frequent 

than the others. The pits may be due to the method that is used by the tracking 

devices for determining the vehicle heading. The method may calculate the angle 

based on the ratio of the x- and y-differences between two consecutively measured 

positions (of which the second position is not recorded) and fail in cases when the 

y-difference equals zero. Whatever the reason is, the measured heading values can-

not be trusted.  

 

 

Fig. 5.2.6. Frequency distribution of the measured vehicle headings. 

For human mobility studies, it is important to divide trajectories into trips, e.g., 

between places of significant stops (Andrienko et al., 2013a). There exist different 

criteria for separating trips: by positional attributes (e.g. taximeter is switched on or 

off), by temporal cycles (e.g. daily trips), by substantial displacement (e.g. if the 
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next point is at least 5km away) and by temporal gaps between points (no movement 

for at least 15min). We used the latter criterion. For tolerating position measurement 

errors, the periods when positions remained within a small area during a time inter-

val of a chosen length (15 minutes) were also treated as stops. In this way, we ac-

quired 164,644 sub-trajectories, from which 3,943 consisted of single points and 

were excluded from the further consideration. The remaining sub-trajectories were 

treated as representing trips. Figure 5.2.7 presents the frequency distribution of the 

trip counts per one car. About 300 cars had only 1 or 2 trips during the two weeks. 

Many cars performed from 30 to 50 trips, and only a few cars had more than 80 

trips. 

 

 

Fig. 5.2.7. Frequency distribution of the trip counts per car. 

Figure 5.2.8 presents an example of all trips of a single car during two weeks. A 

map on the left shows the spatial footprint. A space-time cube (Hagerstrand, 1969; 

Kraak, 2003) shows the same trips in the space and time simultaneously. The verti-

cal axis represents the time of the day. The colors encode the weekdays (green) and 

weekends (red). Generally, such a visualization may enable identifying the person 

whose track is shown; therefore, we have masked the locations on the map and will 

avoid disclosing any further potentially privacy-sensitive details in the text or illus-

trations. 
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Fig. 5.2.8. Trips of a single car are represented on a map (left) and in space-time cube (right), in 

which the trips have been temporally aligned within the daily time cycle. The colors denote 

whether the trips took place on weekdays (green) or weekends (red). 

After performing the investigation of the data properties and cleaning the data 

by excluding incomplete tracks and incorrect values, we can proceed with analysis. 

5.2.4 Data types: Events, trajectories, spatial time series, situations 

There exists a range of transformations that can be applied to movement data for 

analyzing them in various ways and extracting different kinds of information. First 

of all, each recorded position is a spatial event, which is specified by a reference to 

the moving object id, time stamp t, and coordinates x (longitude) and y (latitude). 

An event may also have attributes:  

                             id, t, x, y, attributes.  

The events of moving objects being at specific spatial positions at particular times 

can be called position events for distinguishing from other kinds of spatial events. 

Integration of chronologically arranged position events of the same moving object 

produces a trajectory of this object (Fig.5.2.9). Such integration allows computation 

of derived attributes based on the positions of consecutive points: displacement dis-

tance and direction, time difference, speed estimate etc. These derived attributes can 

be used for extracting secondary events from trajectories (e.g. stops) and dividing 

trajectories into smaller subsets (e.g. trips between stops). We applied these trans-

formations when investigating the data properties. 

Both trajectories and events can be spatially aggregated by a set of places. As a 

result, the places are characterized based on the visits by moving objects (e.g., 

counts of the objects and the visits, statistics of the duration of object presence in 

the area, etc.) or the events that occurred in them (e.g., counts of events of different 

kinds). The aggregation can be performed by time intervals producing place-based 
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time series of the visits and presence. Additionally, trajectories can be aggregated 

according to the moves (transitions) between areas. The transitions link the areas, 

and these links can be characterized based on the number and properties of the tran-

sitions, such as the number of distinct objects that moved and the statistics of the 

speeds and durations. Aggregated transitions between places are usually called 

flows. The aggregation can also be made by time intervals resulting in link-based 

time series of flow characteristics. 

 

 

Fig. 5.2.9. A general scheme of movement data transformations. 

Spatial time series can be viewed in two complementary ways. On the one hand, 

they consist of sequences of values associated with individual places or links, which 

can be called local time series. Respectively, the places or links can be characterized 

and compared based on the temporal variation of the respective values. On the other 

hand, for each time step, there exists a particular distribution of the values over the 

set of places or links. This distribution can be called a spatial situation. The whole 

spatial time series can be seen as a sequence of such spatial situations. Respectively, 

the temporal variation of the spatial situations can be studied and characterized. 

Further events (e.g., occurrences of extreme values) can be extracted from place- 

or link-based spatial time series. 

Data transformations support investigation of different aspects of mobility phe-

nomena. As our goal is characterization of urban context, we expect that transfor-

mations will allow us to enrich the context by different kinds of relevant infor-

mation. 

5.2.5 Context acquisition from movement data 

Traffic and mobility are important parts of the overall urban context. Information 

concerning movements of vehicle and people in an urban area may be relevant in 
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studying various phenomena, such as air quality, noise, or disease spread, and 

events, such as traffic accidents, crimes, or disruptions in the work of public 

transport. Movement-related context information that can be extracted from trajec-

tory data includes place visiting context, flow context, time context, trip context, 

and personalized semantic context. We shall consider a selection of the listed as-

pects in detail in the following sections. 

5.2.5.1 Place visiting context 

For describing the context in terms of place visits, it is necessary to have a suitable 

set of places. When there are no predefined places suiting the goals of an intended 

study, the places need to be appropriately defined. One possible way to do this is 

taking the neighborhoods of some positions of interest, e.g., circles of a chosen ra-

dius around the positions of studied events. Places relevant to transportation studies 

can be defined based on the street segments and intersections. However, the result-

ing level of detail and amount of data can be excessive for the envisaged spatial 

scale of the intended study. For studies of human mobility behaviors, places can be 

defined based on identifying areas of different kinds of human activities.  

A set of places can also be derived by partitioning the territory into compartments 

based on the spatial distribution of some data, such as positions of stationary objects, 

events, or points from vehicle trajectories. Andrienko and Andrienko (2011) pro-

posed to divide a territory based on the distribution of characteristic points of tra-

jectories, which include the positions of stops and turns as well as trip starts and 

ends. The points are extracted from the trajectories and grouped according to their 

spatial locations. A special method for space-bounded point clustering produces 

spatial clusters whose radii do not exceed a given threshold. The medoids of the 

clusters (i.e., the points with the smallest mean distances to the other cluster mem-

bers) are taken as generating seeds for Voronoi tessellation. When the points are not 

evenly spread throughout the territory but form dense clusters, the seeds tend to be 

taken from these clusters, which makes the resulting places meaningful and inter-

pretable. Depending on the chosen maximal radius of a point cluster, the territory is 

divided into larger or smaller compartments. Hence, an analyst can adjust the parti-

tioning to the spatial scale of the intended analysis and the desired level of detail. 

An example of territory partitioning based on trajectory data is shown in Fig. 10. 

The characteristic points have been grouped in clusters with the maximal radius 2.5 

km. As a result, we have obtained 3,535 places (compartments). It can be observed 

that the geometries and the spatial layout of the places reflect the topology of the 

major roads. This is the effect of taking seeds for the tessellation from dense con-

centrations of trajectory points, which mainly occurred along these roads. The 

places in Fig. 5.2.10 are colored according to the numbers of distinct cars that vis-
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ited them. As we mentioned earlier, other characteristics of places that can be de-

rived from movement data are time series of place visits and their durations and 

aggregate characteristics of the objects that visited the places. 

 

 

Fig. 5.2.10. Tessellation of the region into 3,535 polygons based on point clustering bounded by a 

maximal cluster radius of about 2.5 km. Colors represent counts of distinct cars observed in each 

region, from blue (less than 8) to red (more than 102), using equal class size division. 

Thus, our data allow us to characterize the places based on the “population struc-

ture” of the cars that visited them. The data set includes car manufacturer infor-

mation for each anonymized car identifier. Respectively, it is possible to obtain sep-

arate car counts for different manufacturers. Using this information, we would like 

to cluster the places by the similarity of the car population structures. However, a 

straightforward application of clustering to the absolute counts just separates areas 

by total car counts, replicating the major patterns visible in Fig.5.2.9. Therefore, it 

is necessary to normalize the counts by the total numbers of different cars recorded 

in each compartments, thus obtaining proportional values.  

We have clustered the normalized counts using a partition-based clustering 

method k-Means in combination with a projection of the cluster centroids onto a 

plane, as suggested by Andrienko and Andrienko (2013). The results are presented 

in Fig.5.2.11. The positions of the cluster centroids on the projection plane (top left) 

are used for selecting appropriate clustering parameters and then for assigning col-

ors to clusters reflecting their similarities and differences. The cluster profiles in 

terms of the proportions of the cars from different manufacturers are shown in a bar 

chart (top right) and on a map (bottom left). 
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The clustering results show that the main motorways are dominated by Vauxhall, 

Ford and VW, while the central London and Brighton are characterized by a mix of 

everything, with some prevalence of Vauxhalls and Fords. One can find compact 

"villages" in rural areas populated mostly by Fiat, Ford, SEAT, Peugeot or VW.  

Places can also be grouped according to the place-based time series of visits or 

counts of distinct cars, either in absolute or normalized form. We omit such analysis 

here due to space restrictions. However, we shall consider link-based time series in 

the next section. 

 

  

 

Fig. 5.2.11. Clustering of places by similarity of the car population structure. Top: a 2D projection 

of the cluster centers (left) and the profiles of the clusters in terms of the attributes involved in the 

clustering (right). Bottom: a map of the spatial distribution of the clusters (left) and the correspond-

ing legend showing the cluster sizes (right). 
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5.2.5.2 Flow context 

While place-based time series characterize a territory in terms of the spatio-temporal 

variation of the presence of moving objects or events, link-based time series com-

plement the characterization by describing the volumes and characteristics of move-

ments (flows) between the places. In this section, we present an example of analyz-

ing the flows between the same places as in Figs. 5.2.10 and 5.2.11. For the set of 

3,535 places, we obtain 13,153 directed links when we use the original trajectories 

and 12,654 links when we use the trajectories corresponding to the trips (resulting 

from dividing the original trajectories based on stops for 15 minutes or more). The 

divided trajectories are more appropriate for characterization of movement speeds. 

 

 

Fig. 5.2.12. Average speeds of the flows between the places. 

Figure 5.2.12 presents a map where the links are represented by curved lines 

colored according to the average speeds during the transitions between the places. 

Similarly to Fig. 5.2.10, this map reflects the properties of the road network and the 

spatial distribution of the urban areas. Each pair of places is connected by two lines 

reflecting movements in opposite directions. We can notice that for the majority of 

the location pairs there is no substantial difference between the average speeds in 

the opposite directions. However, aggregates that reflect the temporal variation, 

such as the hourly flow volumes over the two weeks, may reveal asymmetry be-

tween the flows in opposite directions.  

In Fig. 5.2.13, we have applied k-means clustering to the flow volumes normal-

ized by the each link’s mean value after exclusion of the links with very low flows 
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(less than 50 moves in total during the 2 weeks period). As in the previous section 

(Fig.11), the parameters for the clustering were selected by inspecting the positions 

of the clusters centroids in the projection space, and the projection was also used 

for assigning colors to the clusters. Clusters whose centroids are close in the projec-

tion space due to the similarity of the respective attribute values receive similar 

colors. In the map in Fig. 13, we can observe the consistency of cluster affiliation 

along chains of links following the major roads; hence, the traffic has common pat-

terns along the major transportation corridors formed by the most important motor-

ways. We can also notice pairs of opposite links that were put in distinct clusters, 

which means that the temporal patterns of the respective flows differ. 

 

 

 

 

 

Fig. 5.2.13. The links clustered according to the similarity of the normalized time series of flow 

volumes. Top: a map with the links colored according to their cluster affiliation; the legend shows 

the cluster sizes. Bottom: the cluster profiles are represented in an aggregated form in 2-dimen-

sional histograms with the rows corresponding to days and columns to hours. The heights of the 

colored bars in the cells are proportional to the mean normalized hourly values for the clusters. 

The 2D histogram with the dark gray bar shows the average temporal variation for all links.  
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5.2.5.3 Time context 

Mobility is essentially a temporal phenomenon; thus, the distribution of people and 

vehicles over a territory and their movements from place to place vary over time. 

As human activities are cyclic in general, we can expect temporal cycles to appear 

in aggregated representations of mobility, and we have observed them in the 2D 

histograms of the aggregated flows in Fig. 5.2.13.  

As shown in Fig. 5.2.9, spatial time series can be viewed from two complemen-

tary perspectives: as spatially distributed local time series and as temporally varying 

spatial situations. Fig. 5.2.13 corresponds to the former perspective: we applied 

cluster analysis to the local time series associated with the links. Now we are going 

to take the other perspective and apply clustering to the time steps of the time series. 

We cluster the time steps according to the similarity of the spatial distributions of 

the car presence (Figs. 5.2.14 and 5.2.15) and flow volumes (Figs. 5.2.16 and 

5.2.17). The aggregates representing the presence have been obtained from the orig-

inal (undivided) trajectories, to take stationary vehicles into account, and the link-

based aggregates have been obtained from the divided trajectories representing the 

trips. 

 

Fig. 5.2.14. Left: a calendar display of the clusters of the hourly time steps according to the distri-

bution of the car presence over the set of places. The columns correspond to 24 hours of the day 

and the rows to the 14 days from Monday (top) to Sunday of the next week (bottom). The colors 

correspond to different clusters, and the sizes of the colored rectangles represent the closeness of 

the cluster members to the cluster centroids (the closer, the bigger). Right: the colors for the clus-

ters have been chosen by projecting the cluster centroids onto a continuously colored plane.  

The calendar view in Fig. 14, left, shows the daily and weekly patterns of the 

spatial distribution of the car presence, where the night hours are similar across the 

days, the morning and evening rush hours of the weekdays appear quite different 

from the mid-day times, and the weekend patterns are distinct from the weekday 

ones. The patterns on Friday evenings differ from the other weekdays by later be-

ginnings of the evening- and night-specific distributions. 
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The small multiple maps in Fig. 5.2.15 demonstrate the spatial distribution of the 

mean volumes of the presence for each cluster. The clusters are arranged according 

to the succession of their numeric labels (from 1 to 12) in rows from left to right 

and from top to bottom. We can observe extremely prominent road network pat-

terns, especially during the mass commuting times (e.g., clusters 6 and 10). These 

patterns do not appear in late evenings and nights (clusters 9 and 12). 

 

 

Fig. 5.2.15. The average spatial distributions of the car presence for the time clusters presented in 

Fig. 5.2.14. The mean car counts are represented by the darkness of the shades of red while light 

blue corresponds to zero values. 

Figures 5.2.16 and 5.2.17 present the results of applying clustering to the time 

steps of the link-based time series. The times have been clustered according to the 

similarity of the spatial distributions of the flow volumes. Figure 5.2.16 is analogous 

to Fig. 5.2.14, and Figure 5.2.17 corresponds to Fig. 5.2.15, but the maps here show 

the spatial distributions of the mean flow volumes corresponding to the clusters. 

The volumes are represented by proportional widths of the flow lines.  
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Fig. 5.2.16. Clusters of the hourly time steps according to the spatial distributions of the flow 

volumes. The representation is analogous to Fig. 5.2.14. 

 

 

Fig. 5.2.17. The maps show the spatial distributions of the flow volumes, represented by propor-

tional line widths, for the clusters shown in Fig. 5.2.16. 

The afternoon clusters 1, 4, and 9 are characterized by intensive traffic on high-

ways while the morning clusters 6, 7, and 8 show higher traffic on local roads and 

in populated areas. Interestingly, the flow distribution patterns in hours 9 to 14 on 



19 

the weekdays are similar to those in the nights. Several clusters consist of only a 

few or even a single time moment with extraordinary traffic distributions. For ex-

ample, cluster 5 has a very high traffic on the inner ring of London. 

5.2.6 Specifics of episodic movement data 

Depending on the temporal resolution and sampling regularity, movement data can 

be categorized as quasi-continuous or episodic (Andrienko et al. 2013a). The exam-

ple data used in this chapter can be ascribed to the former category, because the 

time intervals between the records are quite small and mostly of the same length. In 

episodic movement data, position measurements may be separated by large time 

gaps, in which the positions of the moving objects are unknown and cannot be reli-

ably reconstructed. Such data require special approaches to analysis. Thus, like with 

quasi-continuous data, it is possible to aggregate episodic trajectories to flows be-

tween places. However, consecutive positions of a trajectory may fit in non-neigh-

bouring places. Flow maps constructed from episodic trajectories are typically ex-

tremely cluttered due to a large number of intersecting flow lines connecting distant 

places. Moreover, time intervals between consecutive positions may be longer than 

the time intervals chosen for aggregation. Such trajectory segments must be ignored. 

It is also not possible to estimate the number of moving objects that were present in 

a place during a time interval because the exact times of coming to a place and 

leaving it are unknown.  

In interpreting flow maps built from episodic movement data, analysts should 

keep in mind that they do not represent all movements that really happened. Never-

theless, such flow maps can be useful since there is a chance that mass movements 

or sufficiently frequent movement patterns can be adequately reflected. 

As an example of episodic movement data, Figure 5.2.18 demonstrates 11,671 

trajectories reconstructed from georeferenced posts of social media (Twitter) users. 

Each trajectory consists of a chronological sequence of posts of one user. Similar 

trajectories can be constructed from data about mobile phone activities, including 

making calls, sending messages, and accessing Internet.  

In Fig. 5.2.18, the locations of the social media posts are connected by lines, 

which are drawn with 97% transparency. Long lines mean unknown users’ paths 

between the locations of their consecutive posts. In this dataset, which spans over a 

28-days period in September, the median time interval between records of the same 

user is 14 minutes, the third quartile is about three hours, and the maximum is over 

24 days. However, in most cases, the distances between the points are small, the 

third quartile being only 0.26 km. This means that people tend to make repeated 

posts from the same or nearly the same locations, which are, possibly, repeatedly 

visited. 
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Fig. 5.2.18. Episodic trajectories reconstructed from georeferenced posts of social media users. 

Despite all uncertainties, episodic trajectories reconstructed from social media 

posts or mobile phone use registers can provide valuable information about mobility 

behaviors of people. Unlike trajectories of personal cars, taxis, or any particular 

kind of vehicles, these trajectories can reflect movements made with the use of di-

verse transportation modes. However, because of the uncertainties and inherent bi-

ases, such data need to be used cautiously as a complement to other mobility data 

rather than alone. 

As we mentioned, special care needs to be taken in aggregation of episodic 

movement data. In our example, we partition the territory into spatial compartments 

using the method described in Section 5.2.5.1, i.e., the same as we used for the 

vehicle trajectories. We want to aggregate the data by hourly time intervals; there-

fore, we split the trajectories into trips by time gaps longer than one hour. This 

means that, when the time interval between two points exceeds one hour, the later 

point is treated as the beginning of a new trip. Hence, the transition between the 

points is not used in the aggregation. Additionally, we split the trajectories by spatial 

gaps of more than 5 km, which is the average radius of a spatial compartment used 

for the aggregation. The flow map resulting from the aggregation is shown in Fig. 

5.2.19. It reveals the importance of the central area of London for people’s mobility: 

not only the major flows occurred in the center, but also there were relatively many 



21 

radial movements to and from the central area. Besides, we can see “hubs”, such as 

Camden Town and Wimbledon, with star-like patterns of flows around them. 

 

Fig. 5.2.19. Aggregated movements of social media users. 

Figure 5.2.20, left, demonstrates the temporal distribution of the aggregated 

movements of the social media users. In this two-dimensional temporal histogram, 

the rows correspond to the days, columns to the hours of a day, and the sizes of the 

squares are proportional to the numbers of moves made in the corresponding hourly 

intervals. Prominent patterns of more intensive movements in morning hours of the 

weekdays, with peaks at hour 9, are clearly visible. Many movements also happen 

in the late afternoons and evenings of the weekdays, while on the weekends the 

movements are more uniformly distributed over a day starting from late morning. 

Interestingly, this temporal distribution differs from the temporal distribution of the 

counts of the posted messages shown on the right of Fig. 5.2.20. 
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Fig. 5.2.20. Temporal patterns of the aggregated moves of the social media users (left) are com-

pared with the temporal patterns of the number of posted messages (right). The rows correspond 

to the days, columns to the hours of a day, and the sizes of the squares are proportional to the 

numbers of moves or messages, respectively. 

This example shows that the approaches presented in this chapter are not specific 

to GPS tracks of vehicles but can be applied to other kinds of spatio-temporal data 

collected in various ways. However, the ways of data collection and the properties 

of the data need to be carefully taken into account in data transformation, analysis, 

and interpretation of visual displays and computation results. 

5.2.7 Discussion and conclusions 

Our examples demonstrate how three major aspects of the urban context – places, 

flows, and times – can be characterized using trajectory data. We proposed methods 

to define a suitable set of places, aggregate trajectories into place- and link-based 

time series, and characterize the places, flows, and times taking two complementary 

perspectives in analyzing the time series. We demonstrated the use of methods of 

cluster analysis as a means of abstraction and as an aid in coping with large data 

volumes. Particularly, we showed that clustering by similarity can be applied to 

local time series, for characterizing places and links, and to spatial distributions, for 

characterizing times. 

Due to the page limit, we shall only briefly outline the potential directions for 

extraction of further context information from trajectory data. One possibility is to 

consider attributes along trajectories, such as (Andrienko et al, 2013b):  
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 measured values, e.g., instant speed and direction, acceleration, turn, fuel con-

sumption, CO2 emission, etc.; 

 spatial context, e.g., road type, land use, distances to stationary objects such as 

gas stations or other places of interest; 

 derived from sequences of positions of the same trajectory, e.g. computed speed 

and direction, curvature of the travelled path in a sliding time window; 

 computed based on trajectories of co-moving objects, e.g., count of trajectories 

in given space- and time-windows or distance to Nth closest neighbor. 

Acquired attributes can be aggregated by places, flows, or along trajectories, en-

abling selection of locations, connections, or vehicles with particular features. Such 

vehicles can be visualized on a trajectory wall (Tominsky et al, 2012).  

Trajectory attributes can be used for identifying locations that are characterized 

by particular properties. Thus, density-based clustering of trajectory segments char-

acterized by slow movement can be used for identifying locations of traffic jams 

and revealing their dynamics (Andrienko et al, 2013b). Scalable methods are devel-

oped for identifying hotspots from big data (Nikitopoulos et al. 2019). Considering 

the parts of trajectories preceding traffic jams, one can study the traffic jam propa-

gation over the street network (Wang et al 2013). 

Methods for time series analysis and modeling can be applied to place- or link-

based local time series that have been clustered by similarity. The resulting models 

can be used for predicting traffic characteristics depending on time. Besides, link-

based time series of flow volumes and average movement speeds not only can be 

modelled in separation but also used for representing and modelling the speed-vol-

ume dependencies as proposed by Andrienko and Andrienko (2013b). Such models 

can be utilized for simulation of regular and extraordinary traffic (Andrienko et al 

2016b) or for billboard pricing and informed decision making (Liu et al 2017) 

Division of trajectories into trips allows extraction of routine movement behav-

iors (Rinzivillo et al. 2014) and semantic interpretation of locations (Andrienko et 

al. 2016a). Analysis of semantically-annotated trajectory data (e.g. by state transi-

tion graphs, Andrienko and Andrienko 2018) allows finding important behavior pat-

terns without compromising personal privacy. 

Our study demonstrates that visual analytics approaches and techniques can sup-

port sophisticated analyses for gaining understanding of complex phenomena, such 

as urban mobility, which is necessary for building explainable models and making 

informed substantiated decisions. However, we see a need in further advances in 

visual analytics research and technical developments in the following major direc-

tions: 

 Stronger support of joint analysis of multiple datasets of diverse structure and 

quality. 

 Dealing with streaming data that are constantly generated and updated. 

 More specific approaches for supporting decision making, including develop-

ment, evaluation, and comparison of decision options and performing what-if 

scenarios. 
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